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Abstract

Background: Computational thinking is derived from arguments that the underlying

practices in computer science augment problem-solving. Most studies investigated

computational thinking development as a function of learners' factors, instructional

strategies and learning environment. However, the influence of the wider community

such as educational policies on computational thinking remains unclear.

Objectives: This study examines the impact of basic and technology-related educa-

tional policies on the development of computational thinking.

Methods: Using supervised machine learning, the computational thinking achieve-

ments of 31,823 eighth graders across nine countries were analysed. Seven rule-

based and tree-based classification models were generated and triangulated to deter-

mine how educational policies predicted students' computational thinking.

Results and conclusions: Predictions show that students have a higher propensity to

develop computational thinking skills when schools exercise full autonomy in gover-

nance and explicitly embed computational thinking in their curriculum. Plans to sup-

port students, teachers and schools with technology or introduce 1:1 computing

have no discernible predicted influence on students' computational thinking

achievement.

Implications: Although predictions deduced from these attributes are not generaliz-

able, traces of how educational policies affect computational thinking exist to articu-

late more fronts for future research on the influence of educational policies on

computational thinking.
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1 | INTRODUCTION

Wing's (2006) appeal to computer scientists to share the treasures of

their domain with everybody represents a seminal juncture in compu-

tational thinking (CT) discourse. At the centre of Wing's proposition,

lies the claim that inherent practices and concepts in computer sci-

ence could be harnessed for problem-solving in other domains. Since

‘most educators regard problem-solving as the most important learn-

ing outcome for life’ (Jonassen, 2000, p. 63), the linkage between CT

and problem-solving resonated within the educational community and

policymakers. For instance, CT has been included as a learning dimen-

sion in the national curricula of the European Ministries of Education

(Bocconi et al., 2016) and the Next Generation Science Standards in

the United States (National Research Council, 2013). Also, considered
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an essential 21st-century skill, large-scale comparative studies such as

the International Computer and Information Literacy Study (ICILS) and

Programme for International Student Assessment (PISA) have also

incorporated CT in their assessment frameworks (Fraillon et al., 2019;

Organisation for Economic Co-operation and Development, 2018).

Besides problem-solving, CT is associated with several

educational and social benefits like collaboration, critical thinking, self-

management, confidence, mathematical thinking, natural language lit-

eracy, reasoning, creativity, metacognition, communication and posi-

tive attitudes (Denner et al., 2019; Popat & Starkey, 2019; Scherer

et al., 2019). Wing's (2006) viewpoint likened the importance of CT

with time-honoured literacies of reading, writing and arithmetic.

Though debatable, prospects of CT have necessitated enquiries on

the nature and acquisition of CT. Whilst not exhaustive, these include

interests in CT's conceptualization (Ezeamuzie & Leung, 2022; Shute

et al., 2017), assessment (Korkmaz et al., 2017; Román-González

et al., 2017) and development across educational settings like teacher

education (Yadav et al., 2018), high schools (Yin et al., 2020), middle

schools (Berland & Wilensky, 2015), primary schools (Kong

et al., 2018; Pellas, 2023), early childhood (Bers et al., 2014), under-

graduates (Ezeamuzie, Leung, Garcia, & Ting, 2022) and special needs

(González-González et al., 2019).

Most empirical enquiries on CT focused on instructional strate-

gies (e.g. Hsu et al., 2018; Lye & Koh, 2014; Scherer et al., 2020),

learning environments (e.g. Noh & Lee, 2020; Zhang & Nouri, 2019)

and other micro-level learners' attributes such as gender, attitude, age

and programming experience (e.g. Ezeamuzie, 2023; Sun et al., 2022)

and emotions (Pellas, 2023). But, there are wider community contexts

such as government educational policies, home environment, school

characteristics and classroom settings that may influence students' CT

skills (Fraillon et al., 2019). Policies adopted at the national, provincial

and school levels play critical roles in shaping educational outcomes.

For instance, Hanushek et al. (2013) discovered that granting schools

autonomy enhanced the mathematics and science achievements of

students in developed economies. How the wider community struc-

tures such as the national or local educational policies enhance or

inhibit CT development constitutes a critical gap in the CT discourse.

To close this gap, this study examines how educational policies could

support CT development. Students' CT achievements and educational

policy data of the participating nations were captured in the ICILS

large-scale comparative study (Fraillon et al., 2019; Fraillon

et al., 2020b). The validated big data, which is open and free, contains

invaluable data for uncovering the impact of educational policies on

the development of CT—a 21st-century problem-solving skill for

everybody.

Research Question—How do the basic and technology-related edu-

cational policies predict learners' CT achievement? The analysis will

focus on the following 12 policy features: start age of compulsory

education (X1), length of compulsory education (X2), policy direction

(X3), autonomy in governance for public schools (X4), autonomy in

governance for private schools (X5), curriculum emphasis on CT topics

(X6), support for digital learning (X7), mandate for ICT assessment

(X8), plans for 1:1 computing @ school (X9), plans to support student

with ICT (X10), plans to provide ICT resources (X11) and plan to sup-

port teachers with ICT (X12).

2 | BACKGROUND

2.1 | Computational thinking

There is no consensus on both the history and meaning of CT

(Ezeamuzie & Leung, 2022). Often, Wing's (2006) view that everybody

can harness computer scientists' cognitive styles to solve problems

has been cited as a seminal reference (Grover & Pea, 2013; Shute

et al., 2017). Although the impact of Wing's call cannot be underesti-

mated, other historical accounts exist (Tedre & Denning, 2016). For

instance, CT is also linked to Seymour Papert's work on procedural

thinking, which embodies the epistemic development that occurs

when children teach computers to think (Papert, 1980). Even when not

stated explicitly as ‘computational thinking’, the applicability of com-

puter science practices in problem-solving was engrained in Donald

Knuth's view that teaching a computer to perform tasks strengthens

conceptual clarity (Knuth, 1974) and the call for the inclusion of pro-

gramming in liberal arts by Alan Perils, the first recipient of the Associ-

ation for Computing Machinery Turing Award (Perils, 1962, as cited in

Guzdial, 2008).

Wing (2006) associated CT with problem-solving, abstraction,

decomposition, system design, parallel processing, recursive thinking,

heuristic reasoning and data interpretation. Whereas this framing has

been criticized as overly broad (Mannila et al., 2014), several

researchers consider Wing's position as a call for further research.

Over the years, many frameworks have emerged to articulate the

meaning and operationalization of CT. Examples include the CT

models by the Computing at School (Csizmadia et al., 2015), the Inter-

national Society for Technology in Education (Barr et al., 2011; Barr &

Stephenson, 2011) and others (e.g. Brennan & Resnick, 2012; Selby &

Woollard, 2013; Shute et al., 2017; Weintrop et al., 2016). These

frameworks reflect the non-consensus and multifaceted nature of CT,

which comprises an array of cognitive styles that reside in computer

science.

Though the various models of CT may be encouraging for the

nascent field of CT, it is equally important to highlight the inherent

challenges in comparing learning and assessment across studies

(Ezeamuzie, 2023). Pushing for a consensus model of CT is an uphill if

not impossible task. Nonetheless, recent reviews have shown some

commonality and convergence in the operationalization. In a system-

atic review of CT empirical studies, Ezeamuzie and Leung (2022)

found that problem-solving and abstraction were consistent con-

structs in the framing of CT. Although the association between CT

and some constructs are established, another tier of concern is the

diversity in their operationalization. For example, abstraction takes

any of these four processes—discovery, extraction, creation and

assembly (Ezeamuzie, 2023; Ezeamuzie, Leung, & Ting, 2022). Other

issues of concern include the substantial number of CT studies that

had no clear distinction between CT and computer programming
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(Ezeamuzie & Leung, 2022; Lye & Koh, 2014). Nardelli (2019) pre-

dicted this kind of mix-up will persist if the focus is overly on CT theo-

rization and suggested that CT should be interpreted ‘as a shorthand’
of computer science for all students (p. 32). In this study, the meaning

of CT is interpreted from the definition adopted in the ICILS-2018

large-scale study.

Computational thinking refers to an individual's ability

to recognize aspects of real-world problems which are

appropriate for computational formulation and to eval-

uate and develop algorithmic solutions to those prob-

lems so that the solutions could be operationalized

with a computer (Fraillon et al., 2019, p. 27).

2.2 | Contextual framework

The underpinning framework in this study derives from the ICILS-

2018 contextual framework (Fraillon et al., 2019). Figure 1 shows the

relationship between the components of the framework, which

encapsulates learning as an outcome of four multilevel contexts: indi-

vidual, school/classroom, home environment and wider community.

Individual dimension captures how students' characteristics and their

learning processes impact CT achievement. Classroom/school level

entails other factors within the school environment that influence

learning, such as learning environment designs and availability of tech-

nology. Beyond the school perimeters, the third contextual level deals

with the impact of the home environment (e.g. family composition

and parental education level) on students' CT achievement. The wider

community is the fourth level and encompasses external variables

such as a region's technology development index and educational

policy.

Although the contextual levels are conceptually demarcated, they

are intertwined in practice. For example, technology may exert influ-

ence on the school, home, or wider community contextual levels.

Within each contextual level, the framework shows how antecedents

(features with indirect influence) support the process (features with

direct influence) in producing the CT learning outcomes. As captured

in the conceptual framework, the antecedent and process are crucial

factors of educational policies for delivering outcomes at the wider

community level.

2.3 | Educational policies and computational
thinking

What constitutes educational policy is broad. In this study, educa-

tional policy encompasses the government's directions on the use of

ICT for learning, assessment, teacher development and general admin-

istration. In addition, four basic characteristics of schooling set by the

national or provincial government of a country were examined too:

start age of compulsory education, length of compulsory schooling,

tier of government that sets policy directions and degree of school

autonomy.

Several studies have reported broad differences in the level of

ICT access and penetrations across countries (Fraillon et al., 2014;

World Bank, 2016). This raises issues about equity and differentials in

learning when substantial associations exist between ICT and educa-

tional outcomes. For instance, through face-to-face interviews with

36,619 adults in 32 developing countries, the Pew Research Center

(2015) found that technology with internet access influences educa-

tional outcomes positively. Similarly, a latent analysis of school fea-

tures across 1727 schools from the ICILS-2013 diet showed that

students' digital literacy attainments were distinguishable by the

F IGURE 1 Overarching
contextual framework (Fraillon
et al., 2019).
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presence of ICT infrastructure (Gerick, 2018). The above findings are

consistent with a second-order meta-analysis (n = 25), which revealed

the positive impacts of computer technology on students'

achievements.

Since computing practices are the underpinnings of CT

(Wing, 2006) and most empirical studies operationalized CT obscurely

from ICT practices like programming (Ezeamuzie & Leung, 2022), the

level of ICT presence and use may influence the development of

CT. In fact, ICT in education is increasingly perceived as a standard

tradition rather than a peripheral practice (Fraillon et al., 2019) and

has a significant correlation with learning outcomes (Gerick

et al., 2017). Despite the evidence that ICT affects learners' outcomes

and the elevated importance of CT for 21st-century learners, research

focusing on CT development is generally limited to personal and

micro-level factors like learners' characteristics (e.g. Ezeamuzie, 2023;

Sun et al., 2022), learning environments (e.g. Noh & Lee, 2020;

Zhang & Nouri, 2019) and instructional strategies (e.g. Hsu

et al., 2018; Lye & Koh, 2014; Scherer et al., 2020). ICILS-2018 large-

scale study sought to understand how the multilevel contexts affect

the development of CT. However, the relationship between educa-

tional policies and CT was not examined (Fraillon et al., 2019). On the

other hand, it is vivid that policymakers rely on evidence to advance

learning and institutional agendas (Wiseman, 2010). Moreover, educa-

tors' confidence in the validity of educational practices is enhanced

when supported by evidence (Oakley, 2002). The importance of evi-

dence in underpinning policies that guide educational policies cannot

be over-emphasized. Therefore, to address the knowledge gap and

paucity of investigations into the influence of educational policies on

CT, the educational policy attributes captured in ICILS 2018 are ana-

lysed in this study.

3 | METHODS

3.1 | Research design and data collection

Data for this study were collected in the ICILS-2018 diet. The multidi-

mensional data can be freely retrieved from the ICILS-2018 database

(Mikheeva & Meyer, 2020), which contains the CT and computer and

information literacy achievements of 46,561 students in Grade

8 across 14 countries/regions. ICILS is a large-scale comparative study

that measures students' preparedness for study, work and life in an

information-driven society. ICILS is organized by the International

Association for the Evaluation of Educational Achievement (IEA)—an

independent non-profit research organization with more than six

decades of experience in administering comparative studies including

Trends in International Mathematics and Science Study (TIMSS), Pro-

gress in International Reading Literacy Study (PIRLS) and International

Civic and Citizenship Education Study (ICCS).

Comprehensive details of the ICILS study including the design,

sampling, implementation, validation, scaling, data management and

creation of the database are documented in the technical report

(Fraillon et al., 2020a), database user guide (Mikheeva &

Meyer, 2020), assessment framework (Fraillon et al., 2019) and inter-

national report (Fraillon et al., 2020b). To summarize, a CT test was

administered in 9 out of 14 countries/regions. A total of 31,823 stu-

dents completed two strands of CT tests, each lasting for 25 minutes

with a combined total of 17 questions and 39 score points. The first

strand focused on conceptualizing problems in an automated bus task,

which measured students' knowledge of digital systems, ability to ana-

lyse problems and data representation. The second strand focused on

operationalizing solutions in a farm drone task that assessed students'

ability to plan, develop algorithms and evaluate the efficiency of the

solutions.

Rasch item response theory model was used to derive students'

CT achievement from the 39 score points. The resulting CT scale was

standardized with an international mean of 500 and a standard devia-

tion of 100. The CT achievement was based on the scaled difficulties

of the assessment items. For each assessment item, ICILS generated a

description that articulated the skills and knowledge it measured. An

item map was created by ordering the items according to their scaled

difficulty—ranging from least difficult to most difficult. With items

ordered by difficulty level, an equal number of items were assigned

into thirds and categorized into three bands—lower, middle and upper

regions. Descriptive interpretations of students' CT achievements

were generated from the broad descriptors of the underlying assess-

ment items (see Fraillon et al., 2020a). Students mapped to the lower

region (less than 459 points) demonstrated an aptitude to use simple

sequences in algorithmic problems. However, their solutions contain

suboptimal routes in networks and inefficient algorithms in tasks of

medium complexity. Students mapped to the middle region (459–589

points) understood how CT augments real-world problem-solving with

iterative algorithms. Their solutions for medium-complexity tasks are

efficient but inefficient for high-complexity problems that require

multiple levels of iterations and decisions. Students mapped to the

upper region (above 589) understood CT as a generalizable problem-

solving strategy and designed efficient algorithms for high-complexity

tasks.

Educational policy data of the participating countries were col-

lected through an online national context survey addressed to the

expert ICILS national research coordinators. Using the IEA IDB Analy-

ser (Mikheeva & Meyer, 2020), the national context data was com-

bined with students' CT achievement. With focus on the basic and

ICT-related policies, redundant and unrelated attributes were

removed. These included zero-gain information (e.g. unique identifiers

of students, schools and countries), students test items, student ques-

tionnaire items, variance estimations and sampling weights. Supple-

mentary 1 contains the merged national context and CT

achievement data.

Table 1 summarizes the basic and technology-related policy data

as collated from the students' CT performance and national context

survey in ICILS 2018. The first column of Table 1 shows the resulting

12 educational policy attributes (X1, X2, …, X12) that are potential

predictors of CT achievements and their values within the 9 participat-

ing countries. Autonomy in governance in public schools (X4), auton-

omy in governance in private schools (X5), curriculum emphasis on CT
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topics (X6), plans to support students with ICT (X10), plans to provide

ICT resources (X11) and plans to support teachers with ICT (X12)

were derived as the average of the composite questionnaire items. CT

achievement (Y) is the dependent attribute (also known as the class

attribute in data mining). Table 2 shows the value–code mapping of

the attributes for interpreting the classifiers' rules and trees.

3.2 | Educational data mining approach

The categorical nature of the predictors makes the data mining

approach an interpretable model than other statistical methods.

Alternative options such as multiple linear regression require

continuous variables as predictors. The effectiveness of data mining

techniques in knowledge discovery has been reported in several edu-

cation investigations such as predicting learners' academic perfor-

mance from their activity in a learning management system (Romero

et al., 2013), predicting learners' satisfaction in a massive open online

course (Hew et al., 2020) and deconstructing the association between

demographic characteristics and learners' academic performance

(Rizvi et al., 2019). In data mining, outcomes are sometimes not

known a priori but deduced through a set of logically designed pro-

cesses to uncover patterns between variables. Figure 2 summarizes

the three stages of data mining processes in this study. Weka 3.8—

TABLE 1 Summary of basic and technology policy data from ICILS 2018 national context survey and students' computational thinking.

Policy attribute Valuea

Country/regionb DEU DNK DNW FIN FRA KOR LUX PRT USA

Participants (n = 31,823) 3655

(11.5%)

2404

(7.6%)

1991

(6.3%)

2546

(8.0%)

2940

(9.2%)

2875

(9.0%)

5401

(17.0%)

3221

(10.1%)

6790

(21.3%)

X1: Start Age of Compulsory

Education

6 6 6 7 6 7 4 6 6

X2: Length of Compulsory

Education

9 10 10 9 10 9 12 12 11

X3: Policy Direction Provincial National Provincial National National National National National Provincial

X4: Autonomy in governance

(public schools)

Partial Partial Partial Partial Partial Full Partial Partial Partial

X5: Autonomy in governance

(private schools)

Full Full N/A Partial Partial Full Full Full Full

X6: Curriculum emphasis on CT

topics

None Explicit None Implicit Explicit Explicit None Implicit Implicit

X7: Support for digital learning No Yes Yes Yes Yes Yes Yes No Yes

X8: Mandate for ICT assessmentc No No No No School School No School No

X9: Plans for 1:1 computing @

school

Yes No Yes No No Yes Yes No No

X10: Plans to support student

with ICT

Explicit Explicit Explicit Implicit Explicit Explicit Explicit Implicit Implicit

X11: Plans to provide ICT

resources

Explicit Explicit Explicit Explicit Explicit Explicit Explicit Implicit Explicit

X12: Plan to support teachers

with ICT

Explicit Explicit Explicit None Explicit Implicit Explicit Implicit Implicit

Y: CT Achievement

Lower (n = 10,973; 34.5%) 1320

(36.1%)

433

(18.0%)

732

(36.8%)

734

(28.8%)

919

(31.3%)

643

(22.4%)

2578

(47.7%)

1241

(38.5%)

2373

(34.9%)

Middle (n = 15,588; 49.0%) 1819

(49.8%)

1408

(58.6%)

993

(49.9%)

1330

(52.2%)

1529

(52.0%)

1326

(46.1%)

2270

(42.0%)

1750

(54.3%)

3163

(46.6%)

Upper (n = 5262; 16.5%) 516

(14.1%)

563

(23.4%)

266

(13.4%)

482

(18.9%)

492

(16.7%)

906

(31.5%)

553

(10.2%)

230

(7.1%)

1254

(18.5%)

Note: X1–X12 represent the independent attributes (predictors). Y is the dependent attribute (aka class attribute in supervised learning) and represents the

categorical dimension of students CT achievement.
aPercentage in the participants' row represents the distribution of students between the 9 participating countries/region. For the row on CT Achievement,

the percentage represents the within-country distribution of achievements in 3 grading regions – lower, middle, and upper.
bISO country/region codes: DEU (Germany), DNK (Denmark), DNW (North Rhine-Westphalia, Germany), FIN (Finland), FRA (France), KOR (South Korea),

LUX (Luxembourg), PRT (Portugal), USA (United States of America).
cMandate for ICT assessment has no response for options – ‘yes, with compulsory assessment’, ‘yes, using samples’, and ‘yes, using non-compulsory

assessment’.
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open-source software for machine learning and data mining (Witten

et al., 2016), was adopted for data mining operations.

3.2.1 | Instance selection

The class attributes (i.e., CT achievement) has three values—lower,

middle and upper. However, the accuracy of classification algorithms

is inversely related to the number of options in the class attribute

(Witten et al., 2016). Since the central goal of the data mining experi-

ment is to uncover how educational structures may either support or

hinder the development of CT skills, retaining the data instances that

mapped to ‘middle’ CT achievement may constitute a noise to the

accuracy of the classifiers. Therefore, using data instances that

mapped to ‘lower’ and ‘upper’ CT achievement was deemed neces-

sary in this analysis.

Using the randomization filter in Weka, the entire data instances

were shuffled randomly—a crucial step to prevent selection bias. This

dataset was labelled dataset-3-class (n = 31,823) and comprised the

data of the entire students mapped to the three CT achievements—

lower, middle and upper classes (see Supplementary 2). Another data-

set labelled dataset-2-class (n = 16,235) was generated by removing

all the instances with middle CT achievement (see Supplementary 3).

For comparative insight, the attribute selection and performance of

the classifiers were evaluated with both datasets—the ternary class

(dataset-3-class) and binary class (dataset-2-class).

3.2.2 | Attribute selection

The degree of relevance of the attributes constituted another hurdle

towards understanding how policies influence students' CT achieve-

ment. Pearson Chi-square test of independence was executed and the

strength of the association between the 12 predictors and CT

achievement was deduced with Cramer's V. Following Romero et al.'s

TABLE 2 Code mapping of the attributes' values.

Policy attribute ICILS code Value coding (meaning)

X1: Start Age of

Compulsory

Education

NC2GA02A inf–5.5 (less than or equal to

5.5 years); 5.5–inf (above
5.5 years)

X2: Length of

Compulsory

Education

NC2GA02B inf–10.5 (less than or equal to

10.5 years); 10.5–inf (above
10.5 years)

X3: Overall Policy

Direction

NC2GA01 1 (national); 2 (state/provincial)

X4: Autonomy in

governance in

public school

NC2GA06*A 1 (full autonomy); 2 (partial/

some autonomy); 3 (no/little

autonomy)

X5: Autonomy in

governance in

private schools

NC2GA06*B 1 (full autonomy); 2 (partial/

some autonomy); 3 (no/little

autonomy)

X6: Curriculum

emphasis on CT

topics

NC2GC20* 1 (explicit); 2 (implicit); 3 (none)

X7: Support for

digital learning

NC2GB15 1 (yes); 2 (no)

X8: Mandate for

ICT assessment

NC2GB17 4 (yes, but determine at

school); 5 (no mandate)

X9: Plans for 1:1

computing @

school

NC2GB14 1 (yes); 2 (no)

X10: Plans to

support student

with ICT

NC2GB10* 1 (explicit); 2 (implicit); 3 (none)

X11: Plans to

provide ICT

resources

NC2GB11* 1 (explicit); 2 (implicit); 3 (none)

X12: Plan to

support teachers

with ICT

NC2GB12* 1 (explicit); 2 (implicit); 3 (none)

Note: *, attributes were derived as the average of the composite

questionnaire items. For example, X12 is derived by averaging

NC2GB12A, NC2GB12B…, NC2GB12E.

Describes the 
process of
choosing relevant
data instances.

Instance Selection

Evaluates the 
relevancy of the 
attributes.

Attribute Selection
Evaluates the 
performance of 
classification 
algorithms and 
predicts CT
achievements.cccccccccccccccchhhhhhhhhhhhhhhhhhhhhiiiiieeveveveveveeeeemmmmmeenenenenentttttssssss.....

Classifier
Evaluation

F IGURE 2 Data mining
approach for predicting, grouping,
and discovering associations in
students' computational thinking
achievements.
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(2013) data mining approach in predicting students' performance

through their participation in an online discussion, the relevancy of

the attributes was further analysed. Weka provides attribute selection

algorithms by (a) ranking attributes based on set filters, (b) searching

through the attribute space to select an optimal subset of attributes

and (c) wrapping the search and evaluation of sets of attributes by

using classification schemes.

In the filter-based ranking, three attribute selection filters that

evaluate the relevance of attributes individually were adopted: ChiS-

quaredAttributeEval, GainRatioAttributeEval and InfoGainAttributeEval.

ChiSquaredAttributeEval measures Chi-squared statistic as a test of

association between predictors and CT class. With respect to the CT

class, GainRatioAttributeEval and InfoGainAttributeEval measure the

gain ratio and information gain of the predictors.

– Gain Ratio (Class, Attribute) = (H (Class)—H (Class j Attribute)) /
H (Attribute).

– Info Gain (Class, Attribute) = H (Class)—H (Class j Attribute).
– H is the entropy.

Stratified 10-fold validation was implemented for each filter. That

is, the dataset was split into 10 equal subsets with each subset retain-

ing the class distribution. The average of the attributes' rank was

deducted from the execution of the folds.

The second attribute selection technique entailed executing the

CfsSubsetEval—a feature selection algorithm that searches for an opti-

mal subset of attributes and evaluates the relevance of subsets of

attributes by analysing the predictive capability of individual attri-

butes. Subsets of attributes that are highly correlated with the class

but have low intercorrelation are preferred. Thirdly, the wrapper tech-

niques (WrapperSubsetEval) evaluated different sets of attributes by

using classification schemes. In the evaluation, 10-fold cross-

validation was implemented in the wrappers. The following rule-based

and tree-based classifiers were wrapped in the evaluation: ZERO,

ONER, PART, JRIP, Decision Table, Random Tree, Random Forest,

J48, Decision Stump and Hoeffding Tree. The details of the underlying

algorithms of the classifiers are described in the Weka guidebook

(Witten et al.,2016). In addition, bi-directional or evolutionary

searches were adopted in traversing the attribute space. The

bi-directional search technique starts at any point, searches in both

forward and backward directions and considers all attributes for dele-

tions and additions at all points. Supplementary 4 describes the under-

pinning classifiers and contains the outputs from the filter-based

ranking, wrapper technique and attribute space search.

3.2.3 | Classifier evaluation

The performance of the classification algorithms in predicting stu-

dents' CT achievement was evaluated. Algorithms learn from the

training data and then classifies new observation (test data) into upper

or lower regions of CT achievement. In Weka, classification algorithms

are broadly categorized into tree-based, rule-based, bayes-based,

function-based and lazy algorithms. Tree-based and rule-based classi-

fication schemes were adopted because they can be visually

interpreted. For each algorithm, the performance was evaluated with

the entire data instances (i.e., dataset-3-class) and the data without

the ‘middle’ CT instances (i.e., dataset-2-class). To avoid over-fitting

(i.e., when model fits the training data exactly but depreciates in per-

formance with unseen data), pruning was implemented in the algo-

rithms and only rules with more than 5% instance coverage were

considered. In addition, stratified 10-fold cross-validation was imple-

mented for each classifier. That is, the dataset was split into 10 equal

subsets with each subset retaining the class distribution. For each iter-

ation of the algorithm, a unique subset was used as test data and the

remaining 9-folds were used as training data for model fitting.

Accuracy, precision and recall metrics were adopted for evaluat-

ing model performances. Figure 3 is the confusion matrix elucidating

how the different performance metrics are derived and related. Accu-

racy represents the percentage of correctly classified instances

(i.e., sum of the correct classification / total number of instances in

the test). When a class is precited, precision represents the percent-

age of correct prediction (i.e., number of correct predictions of a class

/ total number of times the class was predicted). Within an actual

class, recall represents the percentage of the class that was correctly

predicted (i.e., the number of correct predictions of a class / total

number of actual instances in the class).

4 | FINDINGS

4.1 | Summarizing the results

Tying back to the underpinning research question—how the basic and

technology-related educational policies predict learners' CT achieve-

ment, Table 3 shows the filter-based attribute ranking as the average

across the 3 filter selection techniques, the number of times an attri-

bute was nominated in the subset in 10 different seed execution of

CfsSubsetEval and WrapperSubsetEval. Pearson Chi-square test of

independence showed statistically significant associations between

the 12 predictors and CT achievement at p = 0.05. According to

Cohen (1988), Cramer's V of 0.1 is classified as small, a value of 0.3 is

classified as medium and 0.5 is classified as a large effect. In the

ternary-class data, the magnitude of association between the attri-

butes and CT achievement was generally weak except for X1, X2, X4

and X6 which were marginally above the small effect threshold. The

Predicted: U Predicted: L

Actual: U TU FL

Actual: L FU TL

F IGURE 3 Confusion matrix of a two-class (upper, lower) of
computational thinking achievement. U = Upper, L = Lower, T = True
Prediction, F = False Prediction; Accuracy = (TU + TL)/
(TU + FU + TL + FL); Precision Upper = TU/(TU + FU); Recall Upper = TU/
(TU + FL); Precision Lower = TL/(TL+ FL); Recall Lower = TL/(TL + FU).
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association between the attributes and CT achievement in the binary-

classed data were similar to the ternary class except for X7 and X11

which were also marginally above the small effect threshold. The

filter-based attribute selection revealed important predictors: start

age of compulsory education (X1), length of compulsory education

(X2), level of autonomy in public school governance (X4), the tangibil-

ity of curriculum emphasis on CT (X6) and clarity of plan to provide

ICT resources (X11). These attributes also ranked in the top half of

the selection algorithms, had stronger associations with CT than other

attributes and were selected in CfsSubsetEval subsets.

Table 4 shows the performance of the classifiers. The accuracy of

classification algorithms was higher when executed with the binary

class dataset (i.e., dataset-2-class with upper and lower options) than

the ternary class equivalent (i.e., dataset-3-class with lower, middle

and upper). The finding is consistent with the rationale for evaluating

the classifiers without the middle CT achievers and aligned to uncover

what may support or hinder high CT achievement. The binary-class

dataset was further evaluated with the five highest-ranked attributes.

However, albeit surprisingly, the accuracy was marginally lower than

the performance of classifiers when executed with the all-attribute

TABLE 3 Attribute selection by average filter ranking, wrapper-based classifier evaluation (WrapperSubsetEval) and optimal subset of
attributes (CfsSubsetEval).

Statistics X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Ternary Class CT (lower, middle, upper)

X2– Cramer's V 0.132 0.127 0.019 0.134 0.042 0.117 0.080 0.047 0.064 0.019 0.085 0.046

Filters (Average Ranking) 2.4** 4.0** 11.6 2.3** 10.0 1.9** 6.0 9.0 7.5 11.4 4.4** 7.5

CfsSubsetEval (% selected in 10-folds

iteration)

100% 80% – 100% – 100% – – – – 80% –

WrapperSubsetEval (% selected by

learning schemes)

80% – – – – – – – – – – –

Binary Class CT (lower, upper)

X2–Cramer's V 0.154 0.166 0.016 0.181 0.042 0.223 0.106 0.057 0.051 0.022 0.113 0.087

Filters (Average Ranking) 3.3** 3.7** 12 1.7** 10 2.0** 6.0 8.0 9.0 11.0 4.4** 7.0

CfsSubsetEval (% selected in 10-folds

iteration)

100% 30% – 100% – 100% – – – – 100% –

WrapperSubsetEval (% selected by

learning schemes)

– – – 20% 70% 70% – – – – – –

Note: –, attribute not selected in the subset list of WrapperSubsetEval and CfsSubsetEval.

**Attribute with ranking of relevance in the top half of the attribute list.

TABLE 4 Performance evaluation of the classification algorithms.

Algorithm

Ternary class CT

(all attributes) accuracy

Binary class CT (five high-ranked

attributes) accuracy

Binary class CT (all attributes)

Accuracy

Precision Recall

Lower Upper Lower Upper

ZEROa 0.4898 0.6759 0.6759 0.676 – 1.000 0.000

One Rulea 0.4995 0.6921 0.6921 0.703 0.585 0.941 0.172

PARTa 0.4995 0.6921 0.7001 0.723 0.577 0.902 0.279

JRipa 0.4898 0.6759 0.7001 0.723 0.577 0.902 0.279

Decision Tablea 0.4995 0.6921 0.7001 0.723 0.577 0.902 0.279

Random Treeb 0.4995 0.6921 0.7001 0.723 0.577 0.902 0.279

Random Forestb 0.4995 0.6921 0.7001 0.723 0.577 0.902 0.279

Decision Stumpb 0.4898 0.6759 0.6759 0.676 – 1.000 0.000

Hoeffding Treeb 0.4995 0.6921 0.7001 0.723 0.577 0.902 0.279

J48b 0.4995 0.6921 0.7001 0.723 0.577 0.902 0.279

REP Treeb 0.4995 0.6921 0.7001 0.723 0.577 0.902 0.279

Note: The start age of compulsory education (X1), length of compulsory education (X2), autonomy in public school governance (X4), curriculum emphasis

on CT (X6) and plan to provide ICT resources (X11) were the 5 high-ranked attributes.
aRule-based.
bTree-based.
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dataset. Across the classifiers, the precision and recall of the lower CT

class are higher than the equivalent metric of the upper CT class. For

example, the Decision Table has 72.3% precision and 90.2% recall

rates for the lower CT class, which is considerably higher than the

57.7% precision and 27.9% recall rates of the upper CT class. Implic-

itly, the classification algorithms generated better predictions and sen-

sitivity in identifying lower performers correctly.

4.2 | Interpreting the outputs of the models

To interpret the outputs, 70% accuracy was designated as the cut-off

for selecting classifiers. Figure 4 through Figure 10 show the gener-

ated rules and trees. Although the outcomes of the classifiers are

represented with different notations, they can be reduced to IF-

ELSE-THEN rules.

In the Decision Table classification (Figure 4), each row repre-

sents one of the seven rules. The 7th rule, for example, is inter-

preted as ‘IF X4 = 1 AND X5 = 1 AND X6 = 1 THEN CT = upper’.
When interpreted with code-value mapping (see Table 2), it denotes

that within an accuracy of 70%, students are predicted to attain

upper CT level when educational policy support full autonomy in

public school governance (X4), full autonomy in private school gov-

ernance (X5) and follow curriculum with explicit emphasis on CT

topics (X6). The other 6 rules are interpreted in a similar approach.

In fact, the 2nd rule is the inverse of the 7th rule, showing the pre-

dicted likelihood of lower CT achievement when schools have only

partial autonomy and emphasis on CT in the curriculum is only

implied.

JRip classification (Figure 5) yielded 2 rules with the ‘=>’ repre-
senting the THEN operator. The first rule states that ‘IF X6 = 1 AND

X5 = 1 THEN CT = upper’. Implicitly, with an accuracy of 70%,

students will attain upper CT levels when the educational policy

implements a curriculum with explicit emphasis on CT topics (X6) and

support full autonomy in private school governance (X5). The second

rule denotes that if the other conditions are not satisfied, then the

students are predicted to attain lower CT achievement. At the end of

each rule is a bracket with two numbers separated by ‘/’. The first

number shows coverage (i.e., the number of instances evaluated with

the rule) and the second number represents the number of incorrectly

classified instances. The second number / first number shows the

classification error of a particular rule. For instance, the first rule has a

classification error of 42.3%.

PART classification (Figure 6) generated 4 rules with ‘:’ represent-
ing the THEN operator. According to the generated rules, students

will attain lower CT levels when the educational policy has the follow-

ing characteristics: public schools have only partial autonomy in gov-

ernance (X4), the start age for compulsory education is above

5.5 years (X1), no explicit plans to provide ICT resources (X11) and

overarching education direction is based on state/provincial govern-

ment. Similarly, prediction shows a propensity for lower CT achieve-

ments when the duration of compulsory education is greater than

10.5 (X2) and private schools have only partial autonomy in gover-

nance (X5).

Some tree-based classification algorithms also met the 70% accu-

racy threshold: Hoeffding Tree (Figure 7), J48 (Figure 8), Random Tree

(Figure 9) and REP Tree (Figure 10). These trees comprise nodes (the

attributes) and branches (the value of the attributes). On the top of

the figures is the root node, which branches to the leaf nodes. For

example, the root node in Hoeffding Tree (Figure 7) is Curriculum

emphasis on CT topics (X6) and has three branches: 1 (explicit),

2 (implicit) and 3 (none), representing the levels of emphasis on

CT. Each path from the root terminates in a decision node, which has

a CT class label of either lower or upper. The rules are generated by

tracing the paths from the root to the decision nodes. For instance,

tracing the path from the left in Hoeffding Tree (Figure 7), the first

rule predicts that when an educational policy follows a curriculum

with explicit (1) emphasis on CT topics (X6) and support full (1) auton-

omy in private school governance (X5), then the students will probably

attain upper CT level.

F IGURE 4 Rules generated by Decision Table classification
algorithm. F IGURE 6 Rules generated by PART classification algorithm.

F IGURE 5 Rules generated by JRIP classification algorithm.
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5 | DISCUSSION

The generated rules from the rule-based and tree-based classifiers

provided human-readable explanations. Relying on rules from one

classifier does not offer coverage for the attributes and is prone to

bias. To predict the impacts of the attributes in promoting or

undermining CT achievement, the rules generated by seven classifiers

are triangulated.

Start age of compulsory education (X1)—although selected as a rel-

evant attribute, the influence on students' CT achievement from the

classifiers is contradictory. In PART (Figure 6), start age for compul-

sory education that is greater than 5.5 years is a component of a rule

F IGURE 7 Tree generated by
Hoeffding Tree classification
algorithm.

F IGURE 8 Tree generated by
J48 classification algorithm.

F IGURE 9 Tree generated by
Random Tree classification
algorithm.
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that predicted lower CT achievement. This contradicts a rule in J48

classifier (Figure 8) that predicted lower CT achievement when the

start age for compulsory education is less than 5.5 years.

Length of compulsory education (X2)—similar to the start age of

compulsory education, this attribute was selected as a relevant attri-

bute for predicting CT achievement. PART (Figure 6) predicted lower

CT achievement when the duration of compulsory education is greater

than 10.5 years. This is consistent with a rule in Random Tree

(Figure 9) that predicts upper CT achievement when the duration of

compulsory education is less than 10.5 years and public schools have

full autonomy in governance (X4). Ordinarily, a longer education dura-

tion will be expected to yield upper CT achievement, which contradicts

the present finding. However, participants in the ICILS study were

recruited from Grade 8 (i.e., after 8 years of compulsory education),

which cast doubt over the applicability of the rules especially when the

duration of compulsory education is greater than 10.5 years.

Overarching direction of education (X3) is ranked least relevant by

the attribute selection algorithms. Whether the national or provincial

government has overall oversight, the evidence about its predicting

capability on CT development appears weak. Appearing only as a

component of the rules in PART (Figure 6) and J48 (Figure 8), lower

CT achievement was predicted when the educational direction is set

at the provincial/state level. However, when there is no emphasis on

CT topics in the Hoeffding Tree (Figure 7), lower CT was predicted

notwithstanding whether the overall direction of education was set at

national or provincial levels.

Autonomy in governance in public and private schools (X4, X5)—

according to the classifiers, students are more likely to attain upper

CT when schools exercise full autonomy in the overall governance.

Similarly, a lower CT achievement is predicted for schools that exer-

cise little or partial autonomy in governance. For instance, the Deci-

sion Table (Figure 4) shows that students will attain upper CT levels

when educational policy support full autonomy in public (X4) and pri-

vate (X5) school governance. Inversely, the Decision Table predicted

lower CT achievement when both public and private schools have

only partial autonomy in governance. These findings are consistent

across the classifiers, appearing in the school autonomy's branches

leading to the decision nodes. For example, when the educational pol-

icy implements a curriculum with explicit emphasis on CT, the Hoeffd-

ing Tree (Figure 7) predicts upper and lower CT achievements for

students in private schools that support full and partial autonomy in

governance, respectively.

Curriculum emphasis on CT (X6) was selected as a relevant attri-

bute for predicting CT achievement. The rules show that highlighting

CT explicitly in the curriculum was associated with upper CT achieve-

ment. JRip (Figure 5), the Hoeffding Tree (Figure 7) and REP Tress

(Figure 10) predicted that students will attain upper CT levels when

educational policy implements a curriculum with explicit emphasis on

CT, especially when private schools have full autonomy in gover-

nance. Whenever implicit or no emphasis on CT is made in a curricu-

lum, the classifiers predicted lower CT achievement. One possible

explanation that subsists is that explicit integration into the curriculum

adds clarity to CT literacy and prompts educators to query how the

educational goals could be achieved.

Support for digital learning (X7)—no inference could be deduced

from either the presence or absence of support for digital learning on

students' CT performance. Hoeffding Tree (Figure 7) and Random

Tree (Figure 9) evaluated the influence of support for digital learning

as a node in the rules. Irrespective of the branching of ‘yes’ or ‘no’ in
the rules, the algorithm predicted lower CT achievement.

Mandate for ICT assessment (X8)—evidence about the predicting

capability of this attribute on CT development is weak. Random Tree

(Figure 9) contains the only reference to the mandate for ICT assess-

ment, appearing as the decision node in a 4-node rule. The classifier

mapped the use of school-based assessment and the absence of man-

dated assessment to lower and upper CT achievements, respectively.

However, considering the antecedents of this decision, including the

requirement for partial autonomy in public school governance and

non-evaluation in other classifiers, the prediction appears

rather weak.

Plans for 1:1 computing (X9)—no conclusion could be deduced

from either the presence or absence of plans for 1:1 computing on

students' CT performance. In addition, the attribute selection algo-

rithm flagged this variable as one but least in relevancy.

Plans to support students with ICT (X10)—No prediction could be

deduced from the nature of the plans to support students with ICT on

students' CT achievement. Random Tree (Figure 9) evaluated the

influence of plans to support students with ICT as a node in the rules.

Yet, irrespective of the branching of ‘explicit’ or ‘implicit’ in the rules,

the algorithm predicted lower CT achievement.

Plans to provide ICT resources (X11)—Although this feature was

selected by the attribute selection algorithms, the evidence about the

predicting capability on CT development appears weak. There is no

direct inference about this attribute and appeared only as a

F IGURE 10 Tree generated
by REP Tree classification
algorithm.
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component of rules in PART (Figure 6) and J48 (Figure 8). In PART's

rule, lower CT achievement was predicted when there is an explicit

plan to provide ICT resources. On the contrary, the rule set in J48 pre-

dicted similar lower CT achievement but for an implicit plan to provide

ICT resources.

Plans to support teachers with ICT (X12) did not appear in any of

the rules generated in the 7 classification algorithms. Hence, no con-

clusion could be deduced from whether the plans to support teachers

with ICT are explicit or implicit.

6 | CONCLUSION, LIMITATIONS AND
FUTURE RESEARCH

With the increasing emphasis on CT as a component of 21st century

skills, extant empirical investigations have focused on the influence of

learners' characteristics, instructional strategies and learning environ-

ments. Although it is obvious that government educational policies

influence educational outcomes, policymakers are equally advised to

rely on evidence to advance learning and institutional agendas

(Wiseman, 2010). How government policies, investments and educa-

tional direction may influence students' CT development remains

unknown.

To highlight the contributions of this work as encapsulated in

the research question—how the basic and technology-related educa-

tional policies predict learners' CT achievement, it is essential to

acknowledge the limitations. Findings from this study were based

on an accuracy cut-off of 70%. Although no fixed rule exists for an

acceptable accuracy level in data mining, higher accuracy is desirable

and enhances confidence in the classifiers. Nonetheless, the cut-off

accuracy is better than random probability guesses between upper

and lower (50%) and the accuracy of some basic classifiers such as

ZERO (67.6%), which predicts the class with the highest count

(Witten et al., 2016). Also, the recall of the upper CT class in the

classifiers was less than 30%, which implies that models have less

sensitivity in predicting high CT achievers. Another threat to the

validity of the finding is inherited from the data. In predicting CT

achievement, every region's current policy was associated with stu-

dents' performance. However, this does not account for changes

that might have occurred over the years and before the participants

attained Grade 8. For example, a region might have adjusted com-

pulsory education's start age or length. The non-consensus operatio-

nalization of CT across schools and countries constitutes another

element of bias. Whereas the assessment of CT in ICILS was based

on the adopted definition for this study (see Computational Think-

ing section), CT is still an emerging educational construct with var-

ied meanings (Ezeamuzie & Leung, 2022). Given these limitations,

the findings from this study may not be generalized. This study

more appropriately sets the ball rolling and extends our knowledge

towards articulating how policies may affect learners' CT achieve-

ment. Hence, while the major discoveries from this study are

highlighted below, it is equally important to note that the predicting

patterns may change as CT crystallizes.

Given the limitations, one insight from this study is that students

may have a higher propensity to attain upper CT levels when the edu-

cational policy supports schools to exercise full autonomy in gover-

nance and have CT explicitly embedded in the curriculum. This is

consistent with the findings in Hanushek et al.'s (2013) cross-country

panel analysis of four waves of the triennial Programme for Interna-

tional Student Assessment (PISA) that assessed the mathematics and

science achievements of more than one million 15-year-old students

in 42 countries. Hanushek et al. (2013) discovered that autonomy

enhanced the achievement of learners in developed economies. Since

CT is still emerging conceptually, how schools may exercise autonomy

seems unclear. Plausibly, schools can adapt, interpret and specify CT

within their respective contextual settings. In addition, the positive

impact of CT explicitness in the curriculum is aligned with the recom-

mendation for CT practices to be made explicit in learning as they are

often latent in everyday problem-solving (Ezeamuzie, Leung, Garcia, &

Ting, 2022).

Moreso, another prediction from this study shows that the start

age of compulsory education, length of compulsory education, the

body responsible for the overarching direction of education, support

for digital learning and mandates for ICT assessment have conflicting

findings and are weak predictors of CT achievement. Four attributes

expressed only plans for changes in the educational policy: plans for

1:1 computing, plans to support students with ICT, plans to provide

ICT resources and plans to support teachers with ICT. No predictions

were deduced from attributes that expressed only plans. As noted in

the limitations, the weak or no predictions deduced from these attri-

butes may not imply that the attributes are not relevant. Rather, it

opens more fronts for future research and discussion on the influence

of educational policies on CT. Specifically, future studies should exam-

ine the impact of real and executable policies instead of just the plans.
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