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Abstract
This study explores the influence of schools’ general characteristics, and their infor-
mation and communication technology (ICT) capabilities on students’ computa-
tional thinking. The computational thinking achievements of 31,823 students who 
participated in a large-scale comparative study in 1412 schools and across nine 
countries/regions were analyzed using supervised machine learning. Five classifi-
cation rules were triangulated to determine how 22 schools’ general characteristics 
and their ICT capabilities predicted students’ computational thinking achievements. 
Data analysis showed no predictive relationship between schools’ ICT capabilities 
and computational thinking. However, some classification rules predicted higher 
computational thinking achievement for students from affluent schools. The discus-
sion amplifies the need for proper incorporation of ICT in schools with recommen-
dations for more research on the nuanced relationship between schools’ characteris-
tics and computational thinking development.

Keywords  Computational thinking · Data mining · ICT · Machine learning · 
School · Technology

1  Introduction

Computational thinking (CT) is often associated with Wing’s (2006) call for com-
puter science educators to teach learners in other domains ‘ways to think like a 
computer scientist’ (p. 35). Wing’s suggestion has been strengthened in a recent 
systematic review that explored how CT has been operationalized (Ezeamuzie & 
Leung, 2022). The findings showed that concepts and practices in computer science 
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have been harnessed to solve problems in other domains. The heightened impor-
tance of CT is derived from its propensity to make people better problem solvers 
— an instructional goal that Robert Gagné, the pioneer of conditions of learning, 
described as the crux of education (Gagné, 1985). Although theories of problem-
solving are amorphous (Jonassen, 1997, 2000; Mayer, 1998), the quest to understand 
CT as a problem-solving strategy is aptly supported by Jonassen’s (2000) assertion 
that ‘most educators regard problem-solving as the most important learning out-
come for life’ (p. 63).

The importance of CT is demonstrated in the increasing multidimensional inquir-
ies about its framework (Ezeamuzie & Leung, 2022), research towards designing 
effective CT instructional approaches (Ezeamuzie, 2023), and disentangling ambi-
guity in CT assessments (Tang et al., 2020). Wing (2006) suggested that CT should 
be ranked in similar importance with time-honoured literacies of writing, reading 
and arithmetic. Whilst such elevation of CT may be contentious, noteworthy posi-
tives have been associated with the acquisition of CT. Several studies have shown 
that CT enhances self-management, social skills, communication, confidence, and 
collaboration (Denner et al., 2019; Popat & Starkey, 2019). Also, CT is positively 
associated with cognitive skills such as mathematical thinking, natural language lit-
eracy, reasoning, creativity, and metacognition (Scherer et al., 2019). The benefits 
of developing CT skills are apparent. CT has been incorporated into major curric-
ula such as the Next Generation Science Standards in the United States (National 
Research Council, 2013) and the national curricula of the European Ministries of 
Education (Bocconi et al., 2016). In addition, the importance of CT has been high-
lighted in large-scale international comparative studies. Notably, the Programme for 
International Student Assessment (PISA) and International Computer and Informa-
tion Literacy Study (ICILS) have incorporated CT into their twenty-first century 
assessment frameworks (Fraillon et al., 2019; Organisation for Economic Co-opera-
tion & Development, 2018).

The lucidly supported benefits of CT and concomitant awareness in learning 
communities have also evoked questions about factors that promote CT develop-
ment. In this regard, studies on CT have focused on issues such as the influence 
of learning environments (Noh & Lee, 2020; Zhang & Nouri, 2019), instructional 
strategies (Hsu et al., 2018; Lye & Koh, 2014; Scherer et al., 2020) and other micro-
level learners’ features such as attitude, gender, age, and programming experience 
(Ezeamuzie, 2023; Sun et  al., 2022). However, there are broader factors that may 
influence students’ CT skills such as classroom, school, home environment, and 
wider community contexts (Fraillon et al., 2019).

To address these critical gaps in CT discourse, this study examines how schools’ 
general characteristics and their information and communication technology (ICT) 
capabilities support CT development. Prior studies have shown that incorporating 
ICT into learning affects students’ performance. In a meta-analysis (n = 110), Sung 
et al. (2016) found that about 70% of learners who use mobile devices (such as lap-
tops) for learning performed significantly better in cognitive-based learning out-
comes. An earlier second-order meta-analysis of 25 meta-analytic studies found that 
the use of computer technology impacts students’ achievements positively (Tamim 
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et al., 2011). Given the antecedent between ICT and learning outcomes, the explicit 
research question underpinning this enquiry is –

Research Question – How do schools’ general characteristics and their ICT capa-
bilities influence students’ CT achievements?

In this study, CT is interpreted from the definition adopted in the second edition 
of ICILS (a.k.a. ICILS-2018) large-scale comparative study.

Computational thinking refers to an individual’s ability to recognize aspects 
of real-world problems which are appropriate for computational formulation 
and to evaluate and develop algorithmic solutions to those problems so that 
the solutions could be operationalized with a computer (Fraillon et al., 2019, 
p. 27).

2 � Literature review

2.1 � Deconstructing computational thinking

Wing (2006) hypothesized that the thinking styles of computer scientists could 
support solving problems in non-computer science domains. Although Wing’s 
assertion has been cited severally as a pioneering phase in CT research and devel-
opment (Grover & Pea, 2013; Shute et  al., 2017), the call for harnessing the 
cognitive practices in computer science for solving problems in other domains 
is not peculiar to Wing (Tedre & Denning, 2016). A similar rationale underlies 
Papert’s (1980) work on procedural thinking, which encapsulates the epistemic 
development in children when they teach computers to think. Even in the 1960s, 
computer scientists had encouraged the transfer of problem-solving approaches to 
other domains. For instance, Alan Perils, the first recipient of the distinguished 
A. M. Turing Award from the Association for Computing Machinery, advo-
cated learning programming by all students as an element of liberal arts edu-
cation (Perils, 1962, as cited in Guzdial, 2008). Also, Donald Knuth – another 
renowned computer scientist, hypothesized that learners’ understanding of tasks 
is enhanced when they translate the problems’ solutions into machine-interpreta-
ble formats (Knuth, 1974). Therefore, even when these literacies were not explic-
itly described as ‘computational thinking’, the works of Papert, Perils, and Knuth 
highlighted the association between computer science practices and human cog-
nition (Bull et al., 2020).

The above historical accounts on the transfer of computer science prac-
tices into solving problems underlie the current CT discourse. However, what it 
means to think like a computer scientist remains a challenge. In Wing (2006), 
CT was linked to practices such as abstraction, decomposition, data interpreta-
tion, heuristic reasoning, recursive thinking, system thinking and parallel pro-
cessing. This framing has been criticized as loose and overly broad (Mannila 
et  al., 2014). But alternative perspectives suggested that Wing’s framing of CT 
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should be interpreted as a nudge to explore the benefits of computer science in 
other domains and a ‘shorthand’ for making computer science accessible to all 
students (Nardelli, 2019, p. 32). Subsequently, many frameworks have been pro-
posed for learning and instruction such as the CT model of the International Soci-
ety for Technology in Education (Barr & Stephenson, 2011; Barr et  al., 2011) 
and Computing at School (Csizmadia et al., 2015). Also, several researchers have 
suggested alternative models to articulate the dimensions of CT (e.g., Brennan 
& Resnick, 2012; Selby & Woollard, 2013; Shute et  al., 2017; Weintrop et  al., 
2016). While there are some overlaps, these frameworks differ in their dimen-
sions and reflect the difficulty in describing the complex thinking styles of com-
puter scientists (Ezeamuzie & Leung, 2022).

The non-consensus on CT makes comparing learning and assessment across stud-
ies challenging (Ezeamuzie, 2023). Whereas a consistent definition may appeal to 
educators, Ezeamuzie and Leung (2022) described such missions as uphill tasks and 
recommended that researchers investigate how dimensions of CT augment everyday 
problem-solving. These recommendations are consistent with Nardelli (2019), who 
envisaged that focusing on the theories may derail the agenda of making comput-
ing accessible to all. Another remaining trouble spot deals with how to distinguish 
between CT and computer programming. Wing (2006) described CT explicitly 
description as ‘conceptualizing, not programming’ (Wing, 2006, p. 35). However, 
many studies operationalized CT by assessing learners’ programming knowledge 
(Ezeamuzie & Leung, 2022; Lye & Koh, 2014).

2.2 � Computational thinking as an outcome of multilevel contextual factors

The underpinning framework for this study is derived from ICILS–2018 contex-
tual framework (Fraillon et  al., 2019). ICILS–2018 framework mapped CT as an 
outcome of multilevel contextual factors. Figure 1 shows the framework with four 
contextual levels: wider community, school/classroom, home environment, and indi-
vidual levels.

The wider community context deals with external variables such as the technol-
ogy development index of a country, government policies, and the features of the 
regional educational system. For example, several national and local educational 
policies predicted students’ CT development (Ezeamuzie et  al., 2024). Other lev-
els of the contextual determinant of CT include school/classroom setup (e.g., learn-
ing environment designs and availability of technology in school) and home envi-
ronment (e.g., parent education and family composition). The individual context 
describes how distinct students’ features may influence CT development. Examples 
include studies that examined the influence of students’ gender, academic grade, and 
prior knowledge on CT (Ezeamuzie, 2023; Grover et al., 2019).

Although the different contexts are mapped to different levels (see Fig. 1), they 
interact with one another. For instance, students’ CT development may be attributed 
to multiple contextual levels such as home, school, and the wider community. In 
addition, each level of the framework has two components –process and antecedents. 
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The process and antecedents refer to features in the different contexts that have direct 
and indirect influences on the development of CT, respectively. This study examined 
the influence of school characteristics on CT development.

2.3 � School contextual influence on computational thinking

In the first edition of ICILS (Fraillon et al., 2013), a latent analysis of school-level 
characteristics from 1727 schools showed that students’ digital literacy attainments 
were distinguishable when schools were clustered by their ICT infrastructure, school 
vision, and teacher professional development (Gerick, 2018). This finding is consist-
ent with an earlier study by Tondeur et al. (2008), which interviewed primary school 
principals (n = 53) and surveyed their teachers (n = 574). Tondeur et al. (2008) found 
that teachers’ ICT use in the classroom is significantly influenced by school policies. 
The positive relationship between school characteristics, teachers’ attitudes to ICT 
use, and students’ digital literacy is also evident in other learners’ outcomes. A sec-
ond-order meta-analysis aggregated the findings of 25 meta-analytic studies on the 
use of computer technology in schools across 40 years (Tamim et al., 2011). Find-
ings from the second-order meta-analysis revealed that the use of computer tech-
nology impacts students’ achievements positively. However, some studies reported 
opposing perspectives on the effect of technology. For instance, McKnight et  al. 
(2016) argued that ICT is not a determinant of successful learning but a thoughtful 
and careful implementation of ICT.

Fig. 1   Contextual framing of computational thinking as an outcome of multilevel contextual factors
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How school characteristics affect the development of CT remains unclear. Most 
CT research focused on the influence of learning environments (Hsu et  al., 2018; 
Lye & Koh, 2014; Scherer et al., 2020), instructional approaches (Hsu et al., 2018; 
Lye & Koh, 2014; Scherer et al., 2020) and learners’ features such as attitude, gen-
der, age, and programming experience (Ezeamuzie, 2023; Sun et al., 2022). ICILS-
2018 explored how different multilevel contextual variables influenced CT skills 
(see Fig. 1). However, the relationships between the school characteristics and CT 
were not explored (Fraillon et al., 2019). To address the knowledge gaps, the school 
characteristics refers to variables captured in the ICILS-2018. In this study, the char-
acteristics are analysed in two broad categories – (a) ICT Capabilities and (b) Gen-
eral Characteristics.

School ICT capabilities refer to characteristics such as the teaching of ICT, the 
provision of innovative ICT teaching tools, the availability of ICT devices for learn-
ing, the expectation to use ICT and the priority accorded to ICT use in a school. 
The attitude of school leaders towards ICT matters too. For instance, a large-scale 
investigation on the role of ICT in mathematics and science classrooms revealed 
that school principals’ views and support of ICT influenced its use in teaching and 
learning (Pelgrum, 2008). ICT has been increasingly adopted as standard practice 
in education (Fraillon et  al., 2019). However, Gerick et  al. (2017) found that the 
correlation between ICT and students’ learning outcomes varied significantly across 
different educational systems. Hence, understanding the impact of school ICT capa-
bilities on students’ CT development remains a gap.

The general school characteristics comprised the school-wide attributes that were 
collected in ICILS-2018. These include the number of students, number of teachers, 
student–teacher ratio, socioeconomic status, number of grade levels, and number of 
students in target grade (i.e., Grade 8).

3 � Research design 

Data in this study was collected in ICILS-2018 and comprised a sample of 46,561 
students in Grade 8 across 14 countries/regions. ICILS examines students’ prepared-
ness for life in a technology and information-driven society. ICILS-2018 was organ-
ised by the International Association for the Evaluation of Educational Achievement 
(IEA) – an independent research organization that has overseen large-scale compar-
ative studies including Progress in International Reading Literacy Study (PIRLS), 
Trends in International Mathematics and Science Study (TIMSS), and International 
Civic and Citizenship Education Study (ICCS) for more than sixty years.

The CT achievements of 31,823 students in 1412 schools across eight coun-
tries (Denmark, Finland, France, Germany, Luxembourg, Portugal, South Korea, 
United States) and one region (North Rhine-Westphalia of Germany) were exam-
ined. Students completed two parts of CT tests that comprised 17 questions and 
39 score points. Part 1 focused on conceptualizing problems through a 25-min 
automated bus task that assessed students’ ability to analyse problems, understand 
digital systems and represent data. Part 2 focused on operationalizing solutions 
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in a 25-min farm drone task. The drone task measured students’ ability to plan, 
develop and evaluate algorithmic solutions.

To account for the difference in item difficulties across the 39 score points, 
students’ CT achievements were standardized through the Rasch item response 
theory with a global mean (M = 500), and standard deviation (SD = 100). About 
99.7% of the students have CT scores between 200 and 800. The minimum and 
maximum CT scores were 81.7 and 872, respectively. CT scores were categorized 
into three classes of achievements (lower, middle, and upper) with thirteen items 
in each class. Items in each class were ordered by their scaled difficulty (Fraillon 
et al., 2020a, p5).

The lower class represents students with less than 459 points. Students in this 
class (n = 10,973; 34.5%) demonstrated the ability to use simple sequences in algo-
rithmic problems. However, the lower class created inefficient algorithmic solu-
tions for tasks of medium complexity. The middle class represents students with CT 
scores between 459 and 589 points. These students (n = 15588; 49.0%) understood 
the application of CT in real-life problem-solving, created iterative algorithms and 
designed efficient solutions for medium-complexity tasks. However, the middle class 
created inefficient solutions for high-complexity problems that require multiple lev-
els of iterations and decisions. The upper class represents the band of students with 
CT scores greater than 589 points. Students in the upper class (n = 5262; 16.5%) had 
a firm grasp of CT as a generalizable problem-solving approach and developed effi-
cient algorithms in high-complex tasks.

The characteristics of the 1412 participating schools were collected through an 
online survey addressed to the school principals and ICT coordinators. The school-
level data were combined with students’ CT achievement as described in ‘merging 
files from different levels’ using the IEA IDB Analyzer (Mikheeva & Meyer, 2020, 
p. 27). Details of the research design and data management strategies are docu-
mented in the assessment framework (Fraillon et al., 2019), technical report (Frail-
lon et  al., 2020a), international report (Fraillon et  al., 2020b), and database user 
guide (Mikheeva & Meyer, 2020).

The consolidated data from the school characteristics and students’ CT achieve-
ments yielded a dataset with more than 700 attributes. With a focus on the schools’ 
ICT capabilities and general characteristics as plausible predictors of CT, unrelated 
and redundant attributes were removed. These included attributes with zero infor-
mation gain (e.g., unique identifiers of countries, schools, and students), students’ 
questionnaires and test items, individual items in the school questionnaire, sam-
pling weights, and variance estimations. On the other hand, attributes derived from 
the aggregation of school questionnaire items and students’ CT achievements were 
retained for data analysis (Supplementary 1).

Table 1 shows the 22 school characteristics that are potential predictors of CT in 
two broad categories – (a) general characteristics (G01, G02, G03, G04, G05, G06) 
and (b) ICT capabilities (T01, T02, T03, T04, T05, T06, T07, T08, T09, T10, T11, 
T12, T13, T14, T15, T16). ICILS-2018 used Rasch item response theory to derive 
T07, T08, T09, T10, T11, T12, T13, T14, T15, and T16. The values of these attrib-
utes were represented with an international mean (M = 50) and standard deviation 
(SD = 10). The ‘low’ label was assigned when the value of the characteristic was less 
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than the international mean. Conversely, a ‘high’ label was assigned when the value 
of the characteristic was greater than or equal to the international mean.

4 � Educational data mining approach

First, a multiple linear regression was conducted using the stepwise method to 
unearth how school characteristics predict CT. The stepwise method is an iterative 
forward and backward approach that enters a predictor that makes significant con-
tributions to the model, re-analyzes the model, and removes predictors that do not 
meet the model’s requirements. Unequal variability from the multi-level effect of the 
school-level data was corrected with the final school weight variable ‘TOTWGTS’ 
(Mikheeva & Meyer, 2020, p. 27). Less than 9% of the variability of the CT achieve-
ment was explained by the resultant model (F (16, 17,758) = 106.315, p < 0.001, 
R2 = 0.087). The strength of the linear relationship between the predictors and CT 
was computed with Pearson correlation (Table 2). The weak multiple linear regres-
sion was consistent with the weak correlation between the school characteristics and 
CT. The school characteristics that correlated significantly with CT (p < 0.05) had 
absolute Pearson’s correlation coefficient between 0.021 in G5 (number of grade 
levels) and 0.239 in G4 (Socioeconomic status). Given the weak regression and cor-
relation, data mining procedures were executed to gain additional insight into the 
school characteristics’ prediction of CT achievements.

Data mining denotes experimental approaches for discovering the relationship 
between attributes of an object from a large dataset. Often iterative, it embodies 
well-designed logical and statistical processes to predict relationships and outcomes; 
and has been applied in educational interventions. Examples include the prediction 
of pre-service teachers’ CT skills from their learning behaviour (Jin & Cutumisu, 
2023), learners’ level of satisfaction in a massive open online course (Hew et  al., 
2020), learners’ academic performance from their activities in a learning manage-
ment platform (Romero et al., 2013), and the relationship between learners’ demo-
graphic distribution and academic performance (Rizvi et al., 2019). Figure 2 shows 
three stages of data mining operations that guided the analysis. An open-source 
software package for data mining and machine learning ‘Weka 3.8’ was used in the 
analysis (Witten et al., 2016).

4.1 � Instance selection

The accuracy of machine classifiers is inversely related to the number of options in 
the class attribute (Witten et al., 2016). In this study, the dependent variable (i.e., CT 
achievements) is the class attribute. The ‘middle’ class instances may decrease the 
classifiers’ accuracy. Therefore, parallel experiments were executed with the data 
instances that were mapped to only the ‘lower’ and ‘upper’ classes.

Data was shuffled with Weka’s instance randomization filter to prevent selec-
tion bias and two datasets were created – (a) class3data and (b) class2data. Class-
3data (n = 31,823) contains data on students with lower, middle, and upper CT 
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achievements (Supplementary 1). Class2data (n = 16,235) excluded the middle CT 
achievers (Supplementary 2). The performances of the classifiers were evaluated 
with the two datasets – class3data and class2data in the subsequent data mining 
operations.

4.2 � Attribute selection

This examined the relevancy of the attributes (i.e., school characteristics) in predict-
ing students’ CT achievement. Attributes’ relevancy was evaluated with (a) filter-
based rankers and (b) search for an optimal subset of attributes. A similar approach 
was adopted in Romero et al.’s (2013) investigation of how learners’ behaviour pre-
dicts students’ performance in an online discussion forum.

Filter-based rankers – Weka’s ChiSquaredAttributeEval, InfoGainAttributeEval 
and GainRatioAttributeEval were executed. ChiSquaredAttributeEval measures Chi-
squared statistics as a test of the relationship between attributes (i.e., school char-
acteristics) and class (i.e., CT achievements). InfoGainAttributeEval and GainRa-
tioAttributeEval rank attributes by comparing the information gain and gain ratio, 
respectively.

–	 Info Gain (Class, Attribute) = H(Class) – H(Class | Attribute)
–	 Gain Ratio (Class, Attribute) = (H(Class) – H(Class | Attribute)) / H(Attribute)
–	 H is the Entropy

Search for optimal subsets of attributes – this compares the predictive ability of 
a set of attributes. Weka’s WrapperSubsetEval was used to evaluate the relevance 
of attributes when wrapped in different classifiers. The following classifiers were 
wrapped in the evaluation: Random Tree, Random Forest, J48, Decision Stump, 
Hoeffding Tree, ZERO, ONER, PART, JRIP, and Decision Table. For each of 

Fig. 2   Data mining approach for predicting relationship between school characteristics and students’ 
computational thinking achievements
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the wrapped classifiers, the attribute space was searched using the bi-directional 
method and evaluated through tenfold cross-validation. The bi-directional or evo-
lutionary technique starts a search at any point, transverses the feature space in 
both backward and forward directions, and examines all attributes for deletions 
and additions at all points. The details of the above selection techniques and clas-
sifiers are described in the Weka guidebook (Witten et al., 2016).

4.3 � Classifier evaluation

The performances of classifiers in predicting the influence of the attributes (i.e., 
school characteristics) on students’ CT achievement were evaluated. Rule-based 
and tree-based classifiers were chosen to display predictions in visualized and 
logical formats. Tree pruning and a 5% minimum instance coverage rule were 
set to avoid over-fitting (i.e., a scenario where the classifier fits the training data, 
but depreciates in performance with unseen data). Classifiers were evaluated with 
tenfold stratified cross-validation (i.e., splitting the dataset into 10 identical sub-
sets with similar class distribution and one subset formed the test data in each of 
the 10 iterations).

The classifiers’ performance was reported with three metrics: accuracy, preci-
sion, and recall. Figure  3 shows the confusion matrix. Accuracy represents the 
percentage of correctly classified instances (i.e., the sum of the correct classifica-
tion / total number of instances in the test). Precision represents the percentage of 
correct prediction when a class is predicted (i.e., number of correct predictions 
of a class / total number of times the class was predicted). Recall represents the 
percentage of the class that was correctly predicted, within an actual class (i.e., 
the number of correct predictions of a class / total number of actual instances in 
the class).

Predicted: U Predicted: L

Actual: U TU FL

Actual: L FU TL

Note.
U = Upper, L = Lower, T = True Prediction, F = False Prediction
Accuracy = (TU + TL) / (TU + FU + TL + FL)
Precision Upper = TU / (TU + FU); Recall Upper = TU / (TU + FL)
Precision Lower = TL / (TL+ FL); Recall Lower = TL / (TL + FU)

Fig. 3   Confusion matrix of a two-class (upper, lower) computational thinking achievement
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5 � Results

5.1 � Outcome of attribute selection

The results of the attribute selection and the descriptions of the underlying clas-
sifiers are enclosed in Supplementary 3. In summary, the wrapper-based attribute 
selection processes generated empty subsets of attributes except OneR. In OneR, 
socioeconomic status (G04) was selected as a relevant predictor in the binary-class 
CT dataset (i.e., class2data). For the filter-based analysis, Fig. 4 shows the attribute 
ranking as the average of the filter-based techniques.

The high-ranked attributes (i.e., predictors appearing in the top 25%) included 
socioeconomic status (G04), student–teacher ratio (G03), number of teachers (G02), 
provision of personal digital devices for teachers (T03), expectations for teachers to 
collaborate with ICT (T08), and availability of ICT resources at school (T11).

Conversely, the following attributes were in the bottom 25% of the predictor 
list: number of grade levels (G05), ICT experience (T01), teaching of computing 
in target grade (T02), priorities for increasing ICT hardware resources (T09), 
priorities for increasing ICT pedagogical support (T10), hinderance to learning 

G01
G02
G03
G04
G05
G06
T01
T02
T03
T04
T05
T06
T07
T08
T09
T10
T11
T12
T13
T14
T15
T16

0 5 10 15 20 25

Binary class CT Ternary class CT

Sc
ho

ol
 Fe

at
ur

es
 a

nd
 A

�r
ib

ut
es

A�ribute Ranking

Fig. 4   Average attribute ranking across the binary and ternary class dataset
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related to pedagogical resources (T13), principals’ general use of ICT (T15), 
and principals’ communication use of ICT (T16).

5.2 � Outcome of classifier evaluation

Supplementary 4 contains the performance metric of the classifiers. The per-
formance was computed with the following predictors – (a) all the attributes, 
(b) top 25% ranked attributes and (c) top 50% ranked attributes. In general, the 
accuracy of classifiers executed with the binary-class dataset (i.e., class2data) 
ranged between 67.6% to 75.9% and was significantly higher than the ternary 
class dataset (i.e., class3data) with classifiers’ accuracy between 49% to 54.1%. 
This outcome justifies the rationale for a parallel evaluation of the classifiers 
without the middle CT achievers. Table  3 shows the accuracy, precision, and 
recall for the binary-class dataset. The precision and recall of the lower class 
were considerably higher than the upper CT class. This indicates that the models 
predicted lower CT achievers better than upper achievers.

Table 3   Performance evaluation 
of the classifiers (binary-classed 
CT dataset)

a  Rule-based, b Tree-based

Classifier Accuracy (%) Precision (%) Recall (%)

Lower Upper Lower Upper

ZERO a 67.6 67.6 – 100 0
One Rule a 68.7 74.6 52.2 81.4 42.4
PART a 70.5 73 58.6 89.5 31
JRip a 70.6 73.2 58.6 89.1 32.1
Decision Table a 75.9 79.5 65.9 86.8 53.3
Random Treeb 68.1 68.7 55.3 96.8 8.2
Random Forestb 68.3 68.2 75.2 99.5 3.1
Decision Stumpb 67.6 67.6 – 100 0
Hoeffding Treeb 71.1 75.9 56.9 83.8 44.5
J48b 70.9 73.4 59 89.1 32.8
REP Treeb 71 73.7 59 88.7 34

Fig. 5   Rules generated by JRIP classifier
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5.3 � Interpretating classifier outputs

High accuracy is desirable for interpreting the outputs of classifiers. However, 
what constitutes acceptable accuracy is subjective. Following a similar thresh-
old in predicting CT from policies (Ezeamuzie et  al., 2024), 70% accuracy was 
designated the cut-off for interpreting the rules. The DecisionTable classifier was 
excluded because of overfitting – classifier does not support pruning and yielded 
1224 rules. Figures 5, 6, 7, 8, and 9 show the generated rules and trees. Notations 
in rule-based and tree-based classifiers are interpreted as if-else-then rules.

JRip classifier  Fig. 5 shows the JRip classifier with two rules. The ‘ =  > ’ represents 
the THEN operator. Rule 1 states that ‘IF G04 = affluent AND G03 = 11 – 20, THEN 
CT = upper’. Implicitly, students are predicted to attain upper CT levels when major-
ity of students in the school come from affluent socioeconomic status (G04) and 
the student–teacher ratio (G03) is between 11 and 20. Rule 2 predicted lower CT 
achievement if the first rule is not satisfied.

PART classifier  Fig. 6 shows the PART classifier with four rules. The ‘:’ represents 
the THEN operator. Rule 1 predicted lower CT levels when majority of students in 
the school come from disadvantaged socioeconomic status (G04). Rule 2 predicted 
upper CT achievement for students from schools where majority of students come 
from affluent socioeconomic status (G04) and the student–teacher ratio (G03) is 
between 11 and 20. Rule 2 is equivalent to JRip’s Rule 1 (Fig. 5). Rule 3 predicted 
lower CT achievement when the student–teacher ratio (G03) is less than 10. Rule 4 
predicted lower CT achievement when the preceding rules were not satisfied.

Fig. 6   Rules generated by PART classifier
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Tree‑based classifiers   – Hoeffding Tree (Fig. 7), J48 (Fig. 8), and REP Tree (Fig. 9) 
met the 70% accuracy cut-off. Trees have nodes (the attributes) and branches 
(the value of the attributes). The root node is the topmost oval in the Figures and 
branches to the leaf nodes. For instance, socioeconomic status (G04) is the root 
node of Hoeffding Tree (Fig. 7) and has three branches: affluent, disadvantaged, and 

Fig. 7   Tree generated by Hoeffding Tree classifier
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neutral. Every path from the root terminates in a decision node with either lower 
or upper CT. Rules are generated by tracing the paths from the root node to the 
decision nodes. For example, the leftmost path in Hoeffding Tree (Fig. 7) predicted 
upper CT achievement when majority of students in the school come from affluent 
socioeconomic status (G04) and the average student–teacher ratio (G03) is between 
11 and 20 or greater than 20.

Fig. 8   Tree generated by J48 classifier
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6 � Discussion

The outputs from the rule-based and tree-based classifiers were triangulated. No 
definite prediction could be drawn from the school characteristics except for the 
socioeconomic status (G04) and student–teacher ratio (G03).

Fig. 9   Tree generated by REP Tree classifier
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6.1 � Socioeconomic status

According to the classifiers (see Figs. 5, 6, 7, 8, and 9), students have higher ten-
dency to develop CT skills in schools where majority of the students come from 
affluent socioeconomic status. This finding may raise concerns about equity and 
inclusiveness for learners from disadvantaged schools or low socioeconomic status. 
One logical extrapolation of this finding suggests that students from affluent socio-
economic status are more likely to attend schools that have quality ICT infrastruc-
ture to support learning. However, more substantiation is required to understand the 
interplay of socioeconomic status and CT achievements. The findings that the socio-
economic status (G04) affects CT may not be generalizable as it was derived from 
classification rules with marginal accuracy and weak recall for upper CT achievers. 
Also, there are contrasting studies like the investigation on web-mediated parents-
child home learning that showed family socioeconomic status had no moderating 
effect on students’ CT skills (Li & Yang, 2023).

6.2 � Student–teacher ratio

The classifiers generated some interesting rules about the student–teacher ratio 
(G03) too. The Prediction of higher CT achievement for students in schools that 
have majority of their students from affluent socioeconomic status, is also hedged 
in the ‘AND’ logical conjunction with the student–teacher ratio (G03). Higher CT 
achievement is predicted when the student–teacher ratio (G03) is between 11 and 
20 (see Figs. 5, 6, 7, 8, and 9), and when the student–teacher ratio (G03) is greater 
than 20 (see Figs. 7, 8, and 9). On the other hand, the classifiers predicted lower CT 
achievements when the teacher supported fewer students. This prediction may not be 
consistent with the expectation that small classroom would make for personalized 
attention and improved learning. One plausible explanation that can be adduced is 
that schools with low student–teacher ratio were likely supporting special educa-
tional needs. Since the underlying cause of this variance is unclear, more investiga-
tions are required in future studies.

6.3 � School ICT capabilities

The lack of insight into the influence of school ICT capabilities on CT development 
is interesting, or perhaps a concern in this study. No definitive prediction could be 
deduced from the ICT experience of a school (T01). In other words, the number of 
years that a school have used ICT for teaching and learning may not translate to the 
level of students’ CT achievement. Though surprising, some prior studies found that 
students’ prior experience in ICT (Shih et al., 2006) and programming (Ezeamuzie, 
2023) did not enhance their abilities to solve CT-related tasks.

Teaching computing (T02), providing digital devices for teachers (T03), and 
the availability of ICT devices to students (T04, T05, T06, T11) did not predict CT 
achievement. Likewise, no definitive prediction could be deduced from the expectation 
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to use ICT (T07, T08), priority for ICT in learning (T09, T10), hindrances to ICT use 
(T12, T13) and school leadership’s attitudes towards the use of ICT (T14, T15, T16). 
The above findings contradict the perceived connection between school ICT and CT. 
Anecdotally, there is a perception that ICT resources are enablers of CT. Most CT 
interventions have underlying ICT platforms such as computers, robotics, and micro-
controllers. For example, Agbo et al. (2022) evaluated how virtual reality environments 
supported the development of minigames for fostering CT skills. More so, Ezeamuzie 
and Leung (2022) found that ICT and CT share blurred boundaries in most empirical 
studies, where CT is often associated with computer programming.

Prior studies that synthesized the effect of ICT on learning such as the meta-analysis 
by Sung et al. (2016) and a second-order meta-analysis by Tamim et al. (2011) found 
that the use of ICT has positive impacts on students’ learning, albeit moderately. In 
contrast, this study found that schools’ ICT capabilities seem insufficient in enhancing 
students’ CT skills. McKnight et al. (2016) had a similar observation that the ordinary 
presence or use of ICT alone is not a determinant of successful learning. Therefore, 
schools need to incorporate CT into their curriculum in meaningful ways and prompt 
teachers to interrogate their ICT practices. Future work is required to identify the 
nuanced relationship between school ICT capabilities and students’ CT development.

6.4 � Limitations

The first threat to the validity of the result is inherited from the underlying data. School 
characteristics were snapshots from the participating schools. Hence, the data did not 
account for the historical developments in schools across the years, which may be 
probable moderators in students’ CT achievements. For instance, schools that reported 
active availability of ICT might have varied experiences in their usage.

The second limitation is the weak performance of the classifiers. What constitutes 
an acceptable accuracy level is subjective. However, higher accuracy, recall and preci-
sion are desirable for enhanced confidence in emerging rules. Specifically, the weak 
recall of the upper CT class implies that the models could not predict CT development 
reliably.

The third issue deals with the multi-dimensional framing of CT. Students’ CT 
achievements were assessed as conceptualizing problems (in an automated bus task 
that probed understanding of digital systems and representation of data) and operation-
alizing solutions (in a farm drone task that measured students’ ability to develop and 
evaluate algorithms). CT framing by ICILS represents one approach and differs from 
others such as alternative arguments in favour of broadening CT to everyday problem-
solving (Ezeamuzie, 2023; Ezeamuzie et al., 2022; Standl, 2017).

7 � Conclusion

Despite the limitations, this study unearthed valuable knowledge and research gaps. 
CT is still a crystallizing literacy and the multiple conceptualizations may not be 
faulted per se. Also, 70% cut-off accuracy for interpreting the classifiers’ results 
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is superior to the accuracy of basic classifiers such as ZERO (67.6%) and OneR 
(68.7%), which predicted classes with the highest count and minimum-error attrib-
ute, respectively (Witten et  al., 2016). The weak predictions may not imply that 
school characteristics are not relevant. Rather, it opens fronts for future research and 
discussion on the nuanced interactions of school characteristics and CT skills.

Tying back to the research question – how schools’ general characteristics and 
ICT capabilities influence students’ CT achievement, data from 31,823 students in 
1412 schools across 9 regions were collated, analysed, and triangulated. Twenty-
two dimensions of school characteristics framed in two categories – general charac-
teristics (n = 6) and ICT capabilities (n = 16), were analyzed as potential predictors 
of CT. A preliminary multiple linear regression analysis resulted in a weak model, 
explaining less than 9% of the variability of CT achievement. Similarly, the correla-
tions between the school characteristics and CT were weak. Consequently, data min-
ing procedures were implemented to further explore the relationship.

No predictions were deduced from school characteristics on CT achievement 
except for the socioeconomic status and student–teacher ratio. The plausible rules 
that predicted higher CT achievement for learners from affluent schools and high 
student–teacher ratio should be interpreted with caution. The finding may not be 
generalizable as the classifiers were moderately accurate. In addition, some con-
founding explanations existed.

Nonetheless, this study adds to our knowledge of the interaction between school 
characteristics and students’ CT achievement. Ordinary presence or use of ICT in 
schools is not a definitive determinant of successful learning. With the continu-
ous emphasis on developing problem-solving skills in schooling, it is important to 
uncover how school characteristics and ICT influence the development of CT – a 
genre of problem-solving skill for everyone that is rooted in computer science.
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