
2022, Vol. 60(2) ﻿481–511

Article

Computational
Thinking Through an
Empirical Lens:
A Systematic Review
of Literature

Ndudi O. Ezeamuzie and
Jessica S. C. Leung

Abstract

This article provides an overview of the diverse ways in which computational think-

ing has been operationalised in the literature. Computational thinking has attracted

much interest and debatably ranks in importance with the time-honoured literacy

skills of reading, writing, and arithmetic. However, learning interventions in this

subject have modelled computational thinking differently. We conducted a systematic

review of 81 empirical studies to examine the nature, explicitness, and patterns of

definitions of computational thinking. Data analysis revealed that most of the

reviewed studies operationalised computational thinking as a composite of program-

ming concepts and preferred definitions from assessment-based frameworks. On the

other hand, a substantial number of the studies did not establish the meaning of

computational thinking when theorising their interventions nor clearly distinguish

between computational thinking and programming. Based on these findings, this

article proposes a model of computational thinking that focuses on algorithmic

solutions supported by programming concepts which advances the conceptual clarity

between computational thinking and programming.

Keywords

computational thinking, problem solving, algorithms, programming, abstraction

Faculty of Education, University of Hong Kong, Hong Kong, Hong Kong

Corresponding Author:

Ndudi O. Ezeamuzie, Faculty of Education, University of Hong Kong, Hong Kong, Hong Kong.

Email: amuzie@connect.hku.hk

Journal of Educational Computing

Research

! The Author(s) 2021

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/07356331211033158

journals.sagepub.com/home/jec

http://crossmark.crossref.org/dialog/?doi=10.1177%2F07356331211033158&domain=pdf&date_stamp=2021-07-27


482	 Journal of Educational Computing Research 60(2)

Introduction

In a well-cited seminal work on computational thinking (CT), Wing (2006)
described CT as a fundamental problem-solving skill for everyone that is
rooted in computer science concepts. Before Wing’s pioneering call for CT,
Alan Perils, the first recipient of the renowned A. M. Turing Award from the
Association for Computing Machinery, had advocated for the inclusion of com-
puter programming as part of liberal education for all students (Perils, 1962, as
cited in Guzdial, 2008). A decade later, another renowned computer scientist,
Donald Knuth, posited that people develop a clearer understanding of tasks by
teaching a computer to perform them (Knuth, 1974). Similarly, in his work on
procedural thinking, Seymour Papert promoted a vision of children teaching
computers to think through programming (Papert, 1980). While Wing’s con-
ceptualisation has been explicitly acknowledged as the de facto reference for CT
in the 21st century (e.g., Grover & Pea, 2013; Shute et al., 2017), the works of
Perils, Knuth, and Papert embodied the spirit of CT and rightly underscored
the association between computer science concepts and human cognition (Bull
et al., 2020).

Wing’s comparison of CT to the time-honoured literacies of reading, writing,
and arithmetic was a brave claim. Subsequently, CT attracted interest from
researchers, educators, and policymakers, leading to significant progress in
the teaching and learning of CT (Hsu et al., 2018). One of the primary reasons
for this spike in interest was the need to align education with the socio-digital
revolution, which has changed the ways we study, work, and live. By leveraging
CT skills, learners can design solutions for complex systems and instructors can
teach the systems as they are (Buitrago Fl�orez et al., 2017). In this regard, CT
encapsulates unique problem-solving skills to support non-reductionist and non-
isolated approaches to learning –practices that are consistent with the objectives
of 21st century science, technology, engineering, and mathematics (STEM)
education.

While the vision of CT for everyone may be open to scholarly debate, the
importance of CT is evidenced by a plethora of empirical findings. In their meta-
analysis of a sample of 105 studies with 539 effect sizes, Scherer et al. (2019)
discovered that computer programming, which is the predominant approach to
developing students’ CT skills (Lye & Koh, 2014), was positively associated with
increase in students’ cognitive skills. A similar meta-synthesis reported positive
changes in programming knowledge when students learned CT through game
programming (Denner et al., 2019). The pros of learning CT extend beyond
programming knowledge to outcomes such as critical thinking, problem solving,
collaboration, communication, and self-management (Popat & Starkey, 2019).
Other advantages include positive attitudes and confidence (Denner et al., 2019).
Therefore, it is not surprising that CT has been included in national curricula,
such as the Next Generation Science Standards in the United States

2 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 483

Introduction

In a well-cited seminal work on computational thinking (CT), Wing (2006)
described CT as a fundamental problem-solving skill for everyone that is
rooted in computer science concepts. Before Wing’s pioneering call for CT,
Alan Perils, the first recipient of the renowned A. M. Turing Award from the
Association for Computing Machinery, had advocated for the inclusion of com-
puter programming as part of liberal education for all students (Perils, 1962, as
cited in Guzdial, 2008). A decade later, another renowned computer scientist,
Donald Knuth, posited that people develop a clearer understanding of tasks by
teaching a computer to perform them (Knuth, 1974). Similarly, in his work on
procedural thinking, Seymour Papert promoted a vision of children teaching
computers to think through programming (Papert, 1980). While Wing’s con-
ceptualisation has been explicitly acknowledged as the de facto reference for CT
in the 21st century (e.g., Grover & Pea, 2013; Shute et al., 2017), the works of
Perils, Knuth, and Papert embodied the spirit of CT and rightly underscored
the association between computer science concepts and human cognition (Bull
et al., 2020).

Wing’s comparison of CT to the time-honoured literacies of reading, writing,
and arithmetic was a brave claim. Subsequently, CT attracted interest from
researchers, educators, and policymakers, leading to significant progress in
the teaching and learning of CT (Hsu et al., 2018). One of the primary reasons
for this spike in interest was the need to align education with the socio-digital
revolution, which has changed the ways we study, work, and live. By leveraging
CT skills, learners can design solutions for complex systems and instructors can
teach the systems as they are (Buitrago Fl�orez et al., 2017). In this regard, CT
encapsulates unique problem-solving skills to support non-reductionist and non-
isolated approaches to learning –practices that are consistent with the objectives
of 21st century science, technology, engineering, and mathematics (STEM)
education.

While the vision of CT for everyone may be open to scholarly debate, the
importance of CT is evidenced by a plethora of empirical findings. In their meta-
analysis of a sample of 105 studies with 539 effect sizes, Scherer et al. (2019)
discovered that computer programming, which is the predominant approach to
developing students’ CT skills (Lye & Koh, 2014), was positively associated with
increase in students’ cognitive skills. A similar meta-synthesis reported positive
changes in programming knowledge when students learned CT through game
programming (Denner et al., 2019). The pros of learning CT extend beyond
programming knowledge to outcomes such as critical thinking, problem solving,
collaboration, communication, and self-management (Popat & Starkey, 2019).
Other advantages include positive attitudes and confidence (Denner et al., 2019).
Therefore, it is not surprising that CT has been included in national curricula,
such as the Next Generation Science Standards in the United States

2 Journal of Educational Computing Research 0(0)

(National Research Council, 2013) and curricula set by European ministries of
education (Bocconi et al., 2016). It offers an invaluable means of tackling chal-
lenges facing 21st century education such as isolated subject learning, as dem-
onstrated by the increased adoption of CT in formal curricula (Repenning et al.,
2015). Even non-governmental organisations, such as the International Society
for Technology in Education (ISTE), have recognised the importance of CT in
their student standards (ISTE, 2016).

Nonetheless, the seemingly unbounded prospects offered by CT evoke equal-
ly critical questions about how it has been operationalized in empirical studies.
What has been taught, learned, and assessed? These fundamental questions
concerning the definition of CT have persisted. Indeed, Grover and Pea
(2013) expressed similar concerns about the multiple definitions of CT. It is
challenging to compare studies, standardise assessments, and generalise findings
when faced with the multiple instructional strategies (see Buitrago Fl�orez et al.,
2017; Hsu et al., 2018; Lye & Koh, 2014), diverse assessment methods (see
Cutumisu et al., 2019; Shute et al., 2017; Tang et al., 2020), and ever-
changing pedagogical tools (see Xia & Zhong, 2018; Yu & Roque, 2019;
Zhang & Nouri, 2019) adopted in CT research. Furthermore, it is not clear
whether the meaning of CT varies across educational settings, such as teachers’
professional development (Menekse, 2015), higher education (Czerkawski &
Lyman, 2015), and even in early childhood education (e.g., Bers, 2017).

Of course, we do not suggest that there is a shortage in CT conceptualisation.
On the contrary, CT discourse is laden with diverse models that reflect varying
perspectives. Such multifaceted definitions are not peculiar to CT but normal in
educational research, where phenomena are examined through different lenses.
Moreover, stepping back from the perceived challenges posed by a lack of con-
sensus, the advantages of interpreting concepts through diverse lenses, including
CT, cannot be ignored. Each definition contributes to a deeper understanding of
the dimensions of CT. Standard conceptual models of CT found in studies
include (a) the operational definition and age-appropriate examples produced
by the International Society for Technology in Education and Computer Science
Teachers Association (D. Barr et al., 2011; V. Barr & Stephenson, 2011), (b) the
Computing At School CT framework (Csizmadia et al., 2015), (c) Brennan and
Resnick’s (2012) CT framework, (d) the CT framework for mathematics and
science developed by Weintrop et al. (2016), and (e) the CT framework devel-
oped by Shute et al. (2017). These models reflect the near consensus that CT
goes beyond programming, is not confined to computer science (Corradini et al.,
2017; Lu & Fletcher, 2009; Nardelli, 2019), and is a transferable skill (Denning,
2017; Nardelli, 2019).

These models have supported CT research. In the current review, CT was
interpreted according to Wing’s (2006) theoretical proposition. Our choice was
informed by the explicit distinction between CT and programming in Wing’s
(2006) model, which conceived CT primarily as a thinking style with or without

Ezeamuzie and Leung 3



484	 Journal of Educational Computing Research 60(2)

programming a machine and rooted in computer science concepts. How have
these computer science concepts been interpreted – in terms of their definition,

consistency, and interaction across empirical studies? Certainly, any attempt to
push for a consensus on CT would be an uphill task; we had no intention to
engage in such a precarious venture. Nevertheless, a critical gap to be investi-

gated relates to the ways in which CT has been operationalised in empirical
studies, specifically with respect to the constituent elements. We expect a sys-

tematic investigation of these studies to reveal important patterns in how edu-
cators have interpreted CT. The findings of this review strengthen knowledge of

CT and contribute to the evolving discourse. In addition, they offer valuable
guidance for educators and policymakers on integrating CT into curricula and

pedagogical practices.
Research Question: How has CT been defined in the literature investigating

CT learning and assessment?
Shute et al. (2017) explored the nature of CT by examining the components,

intervention strategies, and assessment methods. To the best of our knowledge,
their quest to demystify CT is the closest to our study. However, our study is

fundamentally different in two ways. (a) It considered not only the components
of CT but also how these components are defined and interact with each other.

(b) The findings of Shute et al. (2017) were based on a review of both empirical
and theoretical works. In contrast, we aimed to identify how CT and its con-

stituent elements have been operationalised in empirical interventions alone. In
other words, we sought to ascertain, guided by our research question, how CT

has been interpreted in practice.

Method

We adopted the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement as the framing guideline. PRISMA was origi-

nally designed to provide a harmonised guideline for researchers conducting
systematic reviews and meta-analyses in the field of medicine (Moher et al.,

2009). However, this set of items also offers invaluable guidance for systematic
reviews of research in other fields. Figure 1 summarises our use of PRISMA to

identify and screen eligible studies.

Search Procedures

Our search parameters were influenced by the research question. We searched

for articles that contained the keyword “computational thinking” in one or
more of the following four fields: title, abstract, author keywords, and journal

keywords. These fields represent significant parts of scholarly works that depict
the central theme of an article. Note that the enclosing quotation marks were

part of the search term; a schema for restricting the results to exact but

4 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 485

programming a machine and rooted in computer science concepts. How have
these computer science concepts been interpreted – in terms of their definition,

consistency, and interaction across empirical studies? Certainly, any attempt to
push for a consensus on CT would be an uphill task; we had no intention to
engage in such a precarious venture. Nevertheless, a critical gap to be investi-

gated relates to the ways in which CT has been operationalised in empirical
studies, specifically with respect to the constituent elements. We expect a sys-

tematic investigation of these studies to reveal important patterns in how edu-
cators have interpreted CT. The findings of this review strengthen knowledge of

CT and contribute to the evolving discourse. In addition, they offer valuable
guidance for educators and policymakers on integrating CT into curricula and

pedagogical practices.
Research Question: How has CT been defined in the literature investigating

CT learning and assessment?
Shute et al. (2017) explored the nature of CT by examining the components,

intervention strategies, and assessment methods. To the best of our knowledge,
their quest to demystify CT is the closest to our study. However, our study is

fundamentally different in two ways. (a) It considered not only the components
of CT but also how these components are defined and interact with each other.

(b) The findings of Shute et al. (2017) were based on a review of both empirical
and theoretical works. In contrast, we aimed to identify how CT and its con-

stituent elements have been operationalised in empirical interventions alone. In
other words, we sought to ascertain, guided by our research question, how CT

has been interpreted in practice.

Method

We adopted the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement as the framing guideline. PRISMA was origi-

nally designed to provide a harmonised guideline for researchers conducting
systematic reviews and meta-analyses in the field of medicine (Moher et al.,

2009). However, this set of items also offers invaluable guidance for systematic
reviews of research in other fields. Figure 1 summarises our use of PRISMA to

identify and screen eligible studies.

Search Procedures

Our search parameters were influenced by the research question. We searched

for articles that contained the keyword “computational thinking” in one or
more of the following four fields: title, abstract, author keywords, and journal

keywords. These fields represent significant parts of scholarly works that depict
the central theme of an article. Note that the enclosing quotation marks were

part of the search term; a schema for restricting the results to exact but

4 Journal of Educational Computing Research 0(0)

case-insensitive matches. The same search term has been used in previous CT
reviews (Hsu et al., 2018; Shute et al., 2017; Tang et al., 2020). While we found
the methodological guidance paper on systematic review by Alexander (2020)
invaluable in designing this study, the recommendation to use alternate terms
for a major construct did not apply to our review, because the research question
was formulated to explore studies with an explicit interest in CT intervention
and assessment. Therefore, a single search term was an intuitive starting point
that maximised coverage yet within the scope of our investigation.

With the search term identified, we executed our search in three key indexing
databases for multidisciplinary educational research with comprehensive cover-
age of high-quality journal titles and proceedings: Web of Science (WoS),

Figure 1. Flow Diagram of Search Strategies and Screening Phases for Selecting Eligible
Studies for Review.

Ezeamuzie and Leung 5



486	 Journal of Educational Computing Research 60(2)

Scopus, and the Education Resources Information Center (ERIC). Scopus
indexes works from more than 24,600 serial titles from over 5,000 publishers
(Elsevier, n.d.) and WoS indexes the highest-quality research from more than
12,000 journals across 256 subject domains (Clarivate Analytics, n.d.). ERIC is a
respected digital library of educational research that publishes innovative
research for educators and the public.

Apart from restricting our search to the title, abstract, author keywords, and
journal keywords, no further restrictions, such as the date of publication or
language, were applied during this stage. Although our investigation was
based on Wing (2006), we speculated that it was unnecessary to set such restric-
tions. In fact, any pre-2006 articles or written in languages other than English
that evaded the screening might be useful to our investigation. The cut-off date
of this identification stage was September 30, 2020, resulting in 4,686 docu-
ments: WoS (n ¼ 1,829), Scopus (n ¼ 2,565), and ERIC (n ¼ 292). We consid-
ered extending our search results by journal scouring, referential backtracking,
and researcher checking (Alexander, 2020). However, embarking on such pro-
cedures with 4,686 articles was not pragmatic at this stage.

Screening Procedures

With the initial pool of documents identified, we embarked on screening.
Tracking back to the research question, documents were selected if they fulfilled
the following two core inclusion criteria: (a) empirical studies with evidence of
learners’ engagement in a learning intervention and (b) studies that included
assessments of learners’ development of CT based on the intervention and not
self-report measures.

These inclusion criteria mirrored our intention that studies that combined the
learning and assessment of CT would provide clearer information on how the
authors operationalised CT. The above inclusion criteria were designated ‘core’
because they were compulsory conditions for selecting documents that answered
the research question. However, this also suggests that other inclusion and
exclusion boundaries (e.g., peer-reviewed, source of document) were necessary
to validate the quality of the selected documents and ensure a pragmatic review.
Alexander (2020) referred to these boundaries as delimitations. The rationales
for the delimitations are discussed in the following sections concerning the three
sequential screening stages: pre-processing screening, abstract screening, and
full-text screening.

Pre-Processing Stage. We decided to limit the pool of documents to peer-reviewed
journal articles. Appropriate filters (for WoS and Scopus) were set to exclude
other document types, including conference proceedings, editorials, meetings,
and reviews. The decision to exclude the conference proceedings was based on
their variable quality (Rothstein & Hopewell, 2009). Unfortunately, some

6 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 487

Scopus, and the Education Resources Information Center (ERIC). Scopus
indexes works from more than 24,600 serial titles from over 5,000 publishers
(Elsevier, n.d.) and WoS indexes the highest-quality research from more than
12,000 journals across 256 subject domains (Clarivate Analytics, n.d.). ERIC is a
respected digital library of educational research that publishes innovative
research for educators and the public.

Apart from restricting our search to the title, abstract, author keywords, and
journal keywords, no further restrictions, such as the date of publication or
language, were applied during this stage. Although our investigation was
based on Wing (2006), we speculated that it was unnecessary to set such restric-
tions. In fact, any pre-2006 articles or written in languages other than English
that evaded the screening might be useful to our investigation. The cut-off date
of this identification stage was September 30, 2020, resulting in 4,686 docu-
ments: WoS (n ¼ 1,829), Scopus (n ¼ 2,565), and ERIC (n ¼ 292). We consid-
ered extending our search results by journal scouring, referential backtracking,
and researcher checking (Alexander, 2020). However, embarking on such pro-
cedures with 4,686 articles was not pragmatic at this stage.

Screening Procedures

With the initial pool of documents identified, we embarked on screening.
Tracking back to the research question, documents were selected if they fulfilled
the following two core inclusion criteria: (a) empirical studies with evidence of
learners’ engagement in a learning intervention and (b) studies that included
assessments of learners’ development of CT based on the intervention and not
self-report measures.

These inclusion criteria mirrored our intention that studies that combined the
learning and assessment of CT would provide clearer information on how the
authors operationalised CT. The above inclusion criteria were designated ‘core’
because they were compulsory conditions for selecting documents that answered
the research question. However, this also suggests that other inclusion and
exclusion boundaries (e.g., peer-reviewed, source of document) were necessary
to validate the quality of the selected documents and ensure a pragmatic review.
Alexander (2020) referred to these boundaries as delimitations. The rationales
for the delimitations are discussed in the following sections concerning the three
sequential screening stages: pre-processing screening, abstract screening, and
full-text screening.

Pre-Processing Stage. We decided to limit the pool of documents to peer-reviewed
journal articles. Appropriate filters (for WoS and Scopus) were set to exclude
other document types, including conference proceedings, editorials, meetings,
and reviews. The decision to exclude the conference proceedings was based on
their variable quality (Rothstein & Hopewell, 2009). Unfortunately, some

6 Journal of Educational Computing Research 0(0)

articles that met the inclusion criteria might have been omitted by this delimi-

tation. For example, an evaluation of teachers’ development of CT practices

(Kong & Lao, 2019), an examination of CT development when playing a game

(Rowe et al., 2018), and an examination of the role of CT education in devel-

oping algorithmic thinking (Wong & Jiang, 2018) met the inclusion criteria.

However, considering the pragmatism of reviewing more than 2,000 proceedings

articles of variable quality, we excluded them. Moreover, concerns about pub-

lication bias when proceedings are excluded was diminished, since the question

was not focused on effect size. The decision to exclude reviews and other doc-

ument types (e.g. Lye & Koh, 2014; Repenning, 2012; Tissenbaum et al., 2019;

Xia & Zhong, 2018) was relatively easy, because they did not meet the core

inclusion criteria. We excluded 1,602 documents: 631 from WoS, 679 from

Scopus, and 292 from ERIC. The final operation in the pre-processing stage

was the removal of duplicates. The articles were aggregated, and duplicates (n ¼
636) were removed. The remaining 966 articles underwent abstract screening.

Abstract Screening Stage. In this stage, we read the abstracts of the abovemen-

tioned 966 articles and screened out documents that failed to meet the two core

inclusion criteria. We excluded reviews/meta-analyses (e.g. Scherer et al., 2019;

Zhang & Nouri, 2019), theoretical discourse (e.g. Voogt et al., 2015; Yadav

et al., 2016), studies of CT instrument development (e.g. Korkmaz et al.,

2017; Román-González et al., 2017), studies of non-learning CT interventions

(e.g. Israel et al., 2015), and studies that did not assess CT (e.g. Chang, 2014).

The abstract screening culminated in the exclusion of 753 articles, leaving 213

articles for full-text screening.

Full-Text Screening Stage. The last screening procedure, full-text screening, provid-

ed a finer layer of inspection – an important process to assess the eligibility of

articles when inclusion decisions could not be made based on their abstracts. Of

the 213 remaining articles, 68 were excluded because they did not assess CT

skills or focused substantially on programming. For example, Kalelio�glu (2015)

investigated how teaching K–8 introductory computer science based on code.

org influenced the development of students’ reflective thinking skills towards

problem solving. Although CT was mentioned approximately 12 times in

Kalelio�glu’s study, the full-text screening excluded the article because it used a

self-reported scale. Similarly, other studies that measured related outcome var-

iables but not CT skills were excluded. Examples included interest (e.g., Kong

et al., 2018), self-efficacy (e.g., Psycharis & Kallia, 2017), and engagement (e.g.,

Liu et al., 2017). Another 16 studies were excluded because they used self-report

measures to assess CT. Many of the articles in this category used the CT scale

developed by Korkmaz et al. (2017) or variants of this scale. We excluded an

additional 22 articles because their full texts were reported in languages other

Ezeamuzie and Leung 7



488	 Journal of Educational Computing Research 60(2)

than English or were not available. We excluded 26 studies because they did not
implement learning interventions or had unclear research designs.

Finally, after the full-text screening, we scoured the contents of journals that
appeared more than once and looked at the publication records of authors who
had contributed two or more studies. All the identified articles were found in our
initial pool. This could be attributed to the increasing sophistication in database
search algorithms and a single-term search keyword. The screening phase cul-
minated in the inclusion of 81 eligible studies to be charted and analysed (see
Supplementary Table).

Charting and Consolidating Data

After identifying eligible articles, we captured the information required to
address our research question. Arguably, this was the most important stage of
the study. It entailed several iterations of reading, analysis, and discussion of the
81 eligible articles by the research team. Due to the large number of articles
designated for comprehensive review, we charted our data using a spreadsheet.
The articles were catalogued to gain insight into their profiles and identify
potential differences in CT operationalisation.

The captured variables were (a) authors, (b) title of article, (c) year of pub-
lication, (d) type of study (i.e. experimental, quasi-experimental, or exploratory),
(e) number of participants, (f) duration of intervention, (g) research setting (i.e.
in-class, after-school, or camp), (h) academic domain, (i) pedagogical approach,
(j) nature of learning task (i.e. programming, non-programming, or both), (k)
gender of participants (i.e. male, female, or mixed), (l) grade level of participants
(i.e. kindergarten, lower elementary, upper elementary, middle school, high
school, college), (m) nature of assessment task (i.e. programming, non-
programming, or both), and (n) category of definition (see definitional coding
section).

With respect to the research setting, studies conducted on school premises
and within the regular class activities were coded as ‘in-class’. Studies conducted
outside regular class hours such as extracurricular activities but on school prem-
ises were coded as ‘after-school’. When the studies were conducted during school
holidays or outside the participants’ institution, the research setting was coded
as ‘camp’.

To examine study type, articles were coded into three categories: experimen-
tal, quasi-experimental, or exploratory. Some studies reported interventions in
which participants were split into separate groups (experimental versus control)
and received different treatments. We coded the studies as experimental if the
participants were randomly assigned to the groups; otherwise, the quasi-
experimental label was assigned. The exploratory category comprised studies
that investigated certain constructs or practices but did not establish experimen-
tal or control groups.

8 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 489

than English or were not available. We excluded 26 studies because they did not
implement learning interventions or had unclear research designs.

Finally, after the full-text screening, we scoured the contents of journals that
appeared more than once and looked at the publication records of authors who
had contributed two or more studies. All the identified articles were found in our
initial pool. This could be attributed to the increasing sophistication in database
search algorithms and a single-term search keyword. The screening phase cul-
minated in the inclusion of 81 eligible studies to be charted and analysed (see
Supplementary Table).

Charting and Consolidating Data

After identifying eligible articles, we captured the information required to
address our research question. Arguably, this was the most important stage of
the study. It entailed several iterations of reading, analysis, and discussion of the
81 eligible articles by the research team. Due to the large number of articles
designated for comprehensive review, we charted our data using a spreadsheet.
The articles were catalogued to gain insight into their profiles and identify
potential differences in CT operationalisation.

The captured variables were (a) authors, (b) title of article, (c) year of pub-
lication, (d) type of study (i.e. experimental, quasi-experimental, or exploratory),
(e) number of participants, (f) duration of intervention, (g) research setting (i.e.
in-class, after-school, or camp), (h) academic domain, (i) pedagogical approach,
(j) nature of learning task (i.e. programming, non-programming, or both), (k)
gender of participants (i.e. male, female, or mixed), (l) grade level of participants
(i.e. kindergarten, lower elementary, upper elementary, middle school, high
school, college), (m) nature of assessment task (i.e. programming, non-
programming, or both), and (n) category of definition (see definitional coding
section).

With respect to the research setting, studies conducted on school premises
and within the regular class activities were coded as ‘in-class’. Studies conducted
outside regular class hours such as extracurricular activities but on school prem-
ises were coded as ‘after-school’. When the studies were conducted during school
holidays or outside the participants’ institution, the research setting was coded
as ‘camp’.

To examine study type, articles were coded into three categories: experimen-
tal, quasi-experimental, or exploratory. Some studies reported interventions in
which participants were split into separate groups (experimental versus control)
and received different treatments. We coded the studies as experimental if the
participants were randomly assigned to the groups; otherwise, the quasi-
experimental label was assigned. The exploratory category comprised studies
that investigated certain constructs or practices but did not establish experimen-
tal or control groups.

8 Journal of Educational Computing Research 0(0)

The nature of the learning and assessment tasks emerged as an important
parameter. Although we had not set this variable at the outset, the iterative
analysis flagged it as a construct of interest. We observed that learning and
assessment tasks in the studies could be classified as either programming or
non-programming tasks. If the participants wrote computer code as part of
the learning activities (drag-and-drop or text), the nature of the learning task
was coded as programming. Likewise, when writing computer code formed part
of the assessment, the nature of the assessment was coded as programming.

Definitional Coding

Guided by the primary objective of our review – to investigate how CT has been
defined, we were confronted with the challenge of making sense of a large
number of studies. Dinsmore et al. (2008) encountered similar difficulty in
their systematic review to disentangle the definitional boundaries between self-
regulation, self-regulated learning, and metacognition. Informed by Murphy
and Alexander’s (2000) definitional coding scheme, which queried researchers’
degree of explicitness in defining constructs, Dinsmore et al. (2008) coded def-
initions into two categories – implicit or explicit. They sub-categorised implicit
definitions as conceptual definitions (i.e. the construct definition was inferred
from words or phrases in the text), referential definitions (i.e. the construct
definition was deduced from a referenced work), or measurement definitions
(i.e. the construct definition was deduced from a measurement instrument).

In contrast, Singer and Alexander (2017) were interested in deconstructing
the meaning of reading and opted to sub-categorise explicit definitions of read-
ing as conceptual (what is reading?), componential (what does reading entail?),
operational (how does reading occur?), or multifaceted (incorporating two or
more conceptual, componential, and/or operational definitions). Based on these
definitional coding schemes (Dinsmore et al., 2008; Murphy & Alexander, 2000;
Singer & Alexander, 2017), we modified developed a three-tiered coding scheme
for definitions of CT in the reviewed studies, focusing on the explicitness, nature,
and position of definitions.

Explicitness was established if the researchers expressly stated the meaning or
referenced the definition of CT. Clearly and deliberately stated definitions were
coded as explicit, while inferential or implied definitions were coded as implicit.
An additional code – referential – was assigned to the definitions when the final
meanings were derived from other cited works.

The nature of the definitions was coded as conceptual, componential, or mul-
tifaceted. A definition was designated as conceptual if it captured the ‘spirit’ of
CT by answering the question ‘what is CT?’ The componential code was
assigned when CT was interpreted as a composite of other elements, constructs,
concepts, or dimensions. The multifaceted code was assigned to CT definitions
that incorporated both conceptual and componential elements.

Ezeamuzie and Leung 9



490	 Journal of Educational Computing Research 60(2)

Definition position – the last tier in our three-tiered model – was classified

as theoretical, intervention, or assessment. An article was coded as theoretical

when its definition of CT was identified from the framework or literature

review that supported the study; as intervention when the definition was con-

structed from the learning or teaching experiment; and as assessment when the

definition was deduced from the measurement instrument. In an ideal scenario,

the definition in an article would be consistent across the three positions. As

the positional values were not mutually exclusive, adopting a priority ranking

(theoretical¼ 1, intervention¼ 2, and assessment¼ 3) was intuitive. We rea-

soned that definitions of the focal construct (CT) should ideally be established

in the theoretical framework of an article. Our rationale for this priority rank-

ing was connected to the general convention for reporting empirical studies of

interventions. Researchers conceptualise the construct to be investigated, then

implement an intervention based on the construct, and finally measure the

effect of the intervention with instruments designed to assess the construct.

Following the above ranking, the code ‘theoretical’ indicated that the defini-

tion was given in the theoretical background or literature review section of the

article. However, this code did not indicate whether the definition was also

provided in the intervention or assessment section. The code ‘intervention’

indicated that the definition was given in the section on implementing the

intervention. While this suggested that the definition was not provided in

the theoretical discussion, it did not indicate whether the definition was pro-

vided in the assessment section. The code ‘assessment’ implied that CT was

defined in the assessment section only.
The following is a representative example of this three-tiered CT definitional

coding. “To examine children’s growing computational thinking ability

throughout implementation of the TangibleK curriculum, four key variables

were observed and assessed: debugging, correspondence, sequencing, and con-

trol flow” (Bers et al., 2014, p. 149). This was part of a theoretical discussion of

the variables guiding CT investigation in early childhood education. We classi-

fied this as an explicit definition. Although there was no direct ‘CT is . . .’ phrase,
the meaning of CT could be unambiguously decoded from the quotation, which

was clearly aligned with the objective of querying how researchers operational-

ised CT in practice. In addition, CT was described as a composite construct with

four dimensions (debugging, correspondence, sequencing, and control flow).

Therefore, the nature of the definition was coded as componential. The position

of the definition was best described as theoretical because it was part of the

authors’ theoretical background discussion of CT.
In terms of reliability, the coding and analysis process of the eligible articles

involved several rounds of collaborative discussion and refinement. We consid-

ered this rigorous means of achieving a consensus on the coding as a proper

reflection of reliability when multiple values were extracted from the articles.

10 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 491

Definition position – the last tier in our three-tiered model – was classified

as theoretical, intervention, or assessment. An article was coded as theoretical

when its definition of CT was identified from the framework or literature

review that supported the study; as intervention when the definition was con-

structed from the learning or teaching experiment; and as assessment when the

definition was deduced from the measurement instrument. In an ideal scenario,

the definition in an article would be consistent across the three positions. As

the positional values were not mutually exclusive, adopting a priority ranking

(theoretical¼ 1, intervention¼ 2, and assessment¼ 3) was intuitive. We rea-

soned that definitions of the focal construct (CT) should ideally be established

in the theoretical framework of an article. Our rationale for this priority rank-

ing was connected to the general convention for reporting empirical studies of

interventions. Researchers conceptualise the construct to be investigated, then

implement an intervention based on the construct, and finally measure the

effect of the intervention with instruments designed to assess the construct.

Following the above ranking, the code ‘theoretical’ indicated that the defini-

tion was given in the theoretical background or literature review section of the

article. However, this code did not indicate whether the definition was also

provided in the intervention or assessment section. The code ‘intervention’

indicated that the definition was given in the section on implementing the

intervention. While this suggested that the definition was not provided in

the theoretical discussion, it did not indicate whether the definition was pro-

vided in the assessment section. The code ‘assessment’ implied that CT was

defined in the assessment section only.
The following is a representative example of this three-tiered CT definitional

coding. “To examine children’s growing computational thinking ability

throughout implementation of the TangibleK curriculum, four key variables

were observed and assessed: debugging, correspondence, sequencing, and con-

trol flow” (Bers et al., 2014, p. 149). This was part of a theoretical discussion of

the variables guiding CT investigation in early childhood education. We classi-

fied this as an explicit definition. Although there was no direct ‘CT is . . .’ phrase,
the meaning of CT could be unambiguously decoded from the quotation, which

was clearly aligned with the objective of querying how researchers operational-

ised CT in practice. In addition, CT was described as a composite construct with

four dimensions (debugging, correspondence, sequencing, and control flow).

Therefore, the nature of the definition was coded as componential. The position

of the definition was best described as theoretical because it was part of the

authors’ theoretical background discussion of CT.
In terms of reliability, the coding and analysis process of the eligible articles

involved several rounds of collaborative discussion and refinement. We consid-

ered this rigorous means of achieving a consensus on the coding as a proper

reflection of reliability when multiple values were extracted from the articles.

10 Journal of Educational Computing Research 0(0)

Results and Discussion

Profiles of Charted Studies

Table 1 summarises the features of the studies (n¼ 81) in the final reviewed
sample. Although our focus was on understanding how CT has been operation-
alised in empirical studies in the wake of Wing’s (2006) call, our attention was
immediately drawn to the absence of studies that implemented learning in
tandem with the assessment of CT prior to 2013. Thereafter, the focus of CT
research expanded. As we did not delimit our literature search by period, the
paucity of studies that reported CT assessment before 2013 indicates that this
period can be regarded as the infancy phase of CT development. At this junc-
ture, our interest was drawn towards understanding the directions of research in
the infancy stage as a precursor to making sense of trends in CT conceptualisa-
tion. Most of the empirical interventions reported before 2013 measured self-
reported CT dispositions and other educational outcomes. Most of the studies in
our initial pool were proceedings or theoretical works aimed at establishing the
importance and boundaries of CT, such as rethinking approaches to teaching
CT to everyone (Guzdial, 2008), redesigning CT instructional strategies (e.g. the
three-phase ‘use, modify, create’ pedagogical framework proposed by Lee et al.
(2011), representing the different cognitive levels of learning CT), and other
plausible ways of introducing CT to students (e.g. Repenning’s (2012) scalable
game design).

We also noted the variety of instructional strategies deployed to facilitate the
acquisition of CT skills. Effective teaching is an art that combines multiple
pedagogical approaches to suit learners and learning content. Therefore, it
was be difficult to infer the causative influence of all possible combinations of
pedagogical approaches on the development of CT. However, the majority of
the studies reported positive learning outcomes and highlighted the adaptability
of CT to various teaching styles. Instructional strategies explicitly deployed in
three or more studies are shown in Table 1. Other pedagogical approaches used
to teach CT included feedback, portfolio design, peer-to-peer assessment, peer
review, peer coaching, inquiry-based learning, project-based learning, debate,
jigsaws and other puzzles, prototyping, mentoring, metaphor use, personalised
learning, role play, role models, storytelling, and flipped learning.

With respect to gender, more than 90% of the studies were conducted with
mixed-gender samples. There was only one study with male-only participants
(Munoz et al., 2018) and one with female-only participants (Luo et al., 2020).
Although we did not record the ratio of the male to female participants in the
individual studies in our chart, which limits the ability to infer gender balance in
CT, the deliberate effort to ensure equality is encouraging. Significant number
of studies (77.78%, n¼ 63) were situated in school settings, indicating the pos-
itive characterisation of CT as a teachable skill in the classroom. However, a

Ezeamuzie and Leung 11



492	 Journal of Educational Computing Research 60(2)

Table 1. Summary of the Profiles of the Charted Studies.

Study characteristic Value (n, %)

Year of publication 2013 (2, 2.47), 2014 (3, 3.70), 2015 (1, 1.23), 2016

(6, 7.41), 2017 (6, 7.41), 2018 (10, 12.35), 2019

(24, 29.63), 2020 (29, 35.80)

Type of study Exploratory (50, 61.73), quasi-experimental (16,

19.75), experimental (15, 18.52)

Number of participants 1–10 (4, 4.94), 11–30 (11, 13.58), 31–100 (35,

43.21), 101–441 (30, 37.04), n/a (1, 1.23)

Duration of intervention (hours) 0–4.9 (12, 14.81), 5–9.9 (15, 18.52), 10–14.9 (11,

13.58), 15–24.9 (13, 16.05), 25–78 (11, 13.58),

n/a (19, 23.46)

Research settinga School (63, 77.78), camp (11, 13.58), after school

(9, 11.11), n/a (3, 3.70)

Academic domaina Technology (14, 17.28), science (10, 12.35), engi-

neering (6, 7.41), mathematics (2, 2.47), others

(4, 4.94), n/a (48, 59.26)

Instructional strategya Lecturing (39, 48.15), scaffolding (15, 18.52),

collaboration (14, 17.28), learning-through-

activities (10, 12.35), game-based (7, 8.64),

problem-based (7, 8.64), simulation and

modelling (7, 8.64), constructionism (6, 7.41),

pair programming (5, 6.17), game-playing (4,

4.94), group work (4, 4.94), reflection (4, 4.94),

constructivism (3, 3.70)

Gender Female (1, 1.23), male (1, 1.23), mixed (74, 91.36),

n/a (5, 6.17)

Grade levela Kindergarten (4, 4.94), lower elementary (15,

18.52), upper elementary (30, 37.04), middle

school (20, 24.69), high school (7, 8.64), college

(15, 18.52), in-service teacher (3, 3.70), special

needs (1, 1.23), n/a (3, 3.70)

Nature of learning tasks Programming (62, 76.54), non-programming (17,

20.99), both (1, 1.23), n/a (1, 1.23)

Nature of assessment tasks Non-programming (54, 66.67), programming (26,

32.10), both (1, 1.23)

Explicitness of definition Explicit (57, 70.37), implicit (21, 25.93), n/a (3,

3.70)

Nature of definition Componential (61, 75.31), conceptual (15, 18.52),

multifaceted (2, 2.47), n/a (3, 3.70)

Position of definition Assessment (28, 34.57), theoretical (27, 33.33),

intervention (23, 28.40), n/a (3, 3.70)

Referential definition Yes (39, 48.15), no (42, 51.85)

aThe values for the study characteristics are not mutually exclusive.

12 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 493

Table 1. Summary of the Profiles of the Charted Studies.

Study characteristic Value (n, %)

Year of publication 2013 (2, 2.47), 2014 (3, 3.70), 2015 (1, 1.23), 2016

(6, 7.41), 2017 (6, 7.41), 2018 (10, 12.35), 2019

(24, 29.63), 2020 (29, 35.80)

Type of study Exploratory (50, 61.73), quasi-experimental (16,

19.75), experimental (15, 18.52)

Number of participants 1–10 (4, 4.94), 11–30 (11, 13.58), 31–100 (35,

43.21), 101–441 (30, 37.04), n/a (1, 1.23)

Duration of intervention (hours) 0–4.9 (12, 14.81), 5–9.9 (15, 18.52), 10–14.9 (11,

13.58), 15–24.9 (13, 16.05), 25–78 (11, 13.58),

n/a (19, 23.46)

Research settinga School (63, 77.78), camp (11, 13.58), after school

(9, 11.11), n/a (3, 3.70)

Academic domaina Technology (14, 17.28), science (10, 12.35), engi-

neering (6, 7.41), mathematics (2, 2.47), others

(4, 4.94), n/a (48, 59.26)

Instructional strategya Lecturing (39, 48.15), scaffolding (15, 18.52),

collaboration (14, 17.28), learning-through-

activities (10, 12.35), game-based (7, 8.64),

problem-based (7, 8.64), simulation and

modelling (7, 8.64), constructionism (6, 7.41),

pair programming (5, 6.17), game-playing (4,

4.94), group work (4, 4.94), reflection (4, 4.94),

constructivism (3, 3.70)

Gender Female (1, 1.23), male (1, 1.23), mixed (74, 91.36),

n/a (5, 6.17)

Grade levela Kindergarten (4, 4.94), lower elementary (15,

18.52), upper elementary (30, 37.04), middle

school (20, 24.69), high school (7, 8.64), college

(15, 18.52), in-service teacher (3, 3.70), special

needs (1, 1.23), n/a (3, 3.70)

Nature of learning tasks Programming (62, 76.54), non-programming (17,

20.99), both (1, 1.23), n/a (1, 1.23)

Nature of assessment tasks Non-programming (54, 66.67), programming (26,

32.10), both (1, 1.23)

Explicitness of definition Explicit (57, 70.37), implicit (21, 25.93), n/a (3,

3.70)

Nature of definition Componential (61, 75.31), conceptual (15, 18.52),

multifaceted (2, 2.47), n/a (3, 3.70)

Position of definition Assessment (28, 34.57), theoretical (27, 33.33),

intervention (23, 28.40), n/a (3, 3.70)

Referential definition Yes (39, 48.15), no (42, 51.85)

aThe values for the study characteristics are not mutually exclusive.

12 Journal of Educational Computing Research 0(0)

sizeable number of studies (59.26%, n¼ 48) did not report how CT interfaced

with academic domains or school subjects, which extends the conceptualisation

of CT as a generic skill. The studies that reported how CT interfaced with

academic domains were classified into the four domains of STEM: technology

(17.28%, n¼ 14), science (12.35%, n¼ 10), engineering (7.41%, n¼ 6), and

mathematics (2.47%, n¼ 2). Four studies explored CT acquisition outside the

traditional STEM domains: psychology (Yadav et al., 2014), dance (Leonard

et al., 2021), story-writing (Price & Price-Mohr, 2018), and professional devel-

opment (Yadav et al., 2018). In summary, the development of CT was investi-

gated from early childhood through college-level education. While the small

number of investigations in kindergartens can be attributed to the probable

cognitive load associated with learning CT, we were surprised by the paucity

of interventions with high school students. A plausible explanation is the rigidity

of curricula in high schools, where most students have concrete career directions

in mind and computer science is an elective albeit well-established subject

(Repenning et al., 2015).

Definition Explicitness

For clarity, the categorisation of definitions as explicit did not necessarily sug-

gest that the authors presented their own definitions of CT or used definitional

phrases such as ‘CT is . . .’. Rather, it indicated that the meaning of CT was

clearly articulated in the authors’ descriptions of CT – whether it was conceived

by the authors or extended from other references. For example, pointers such as

“CT-test assesses the user’s computational thinking level on five dimensions”

(Taylor & Baek, 2019, p. 101) and “design for the programming for CT devel-

opment curriculum was based on a framework adapted from Brennan and

Resnick (2012)” (Kong et al., 2020, p. 5) were indicators of definitions were

categorised as explicit.
Based on our coding, we found that 70.37% of the studies (n¼ 57) offered

explicit definitions. Implicit definitions were found in 25.93% of the studies

(n¼ 21). The definitions in the remaining 3.70% of the studies (n¼ 3) were

unclear and designated as undefined. All the implicit and undefined categories

were logged as non-referential definitions because the meanings and absence of

CT respectively, were deduced directly from the primary studies.
Of the studies that explicitly defined CT (n¼ 57), 68.42% (n¼ 39) gave ref-

erential definitions, in contrast with 31.58% (n¼ 18) that were coded as non-

referential definitions. This indicated that more than two thirds of the studies

that explicitly defined CT, adduced its operational meaning from existing CT

frameworks. While this finding may be encouraging and aligned with the golden

rule of hinging educational research on sound theory, other explanations are

possible. As we demonstrate in a later section, this trend may also be linked to

Ezeamuzie and Leung 13



494	 Journal of Educational Computing Research 60(2)

the blurry understanding of CT and/or preference for using existing measure-
ment instruments.

Explicit and Conceptual Definitions. Surprisingly, only four articles provided explicit
conceptual/multifaceted definitions (Allsop, 2019; Kim et al., 2013; Rodr�ıguez
del Rey et al., 2021; Yadav et al., 2018). Kim et al. (2013) provided an explicit
conceptual definition, describing CT as “a sort of logical thinking every human
being has” (p. 443) in an experimental investigation of the effectiveness of paper-
and-pencil programming over Logo in preservice teachers’ classroom. They
measured the CT skills acquired by the preservice teachers using the Group
Assessment of Logical Thinking, an instrument designed primarily to measure
logical reasoning skills. This depicts that the authors inferred a strong associa-
tion between CT and logical thinking. Another explicit conceptual definition
was reported in a study of a professional development programme. Yadav et al.
(2018) defined CT as “the ways of thinking, or habits of mind, that computer
scientists use” (p. 379), which is consistent with Wing’s (2006) seminal interpre-
tation of CT. This broad definition was crafted to lead in-service teachers to
integrate CT with mathematics and science, reflecting on the meaning. Through
vignette challenges, Yadav et al. (2018) deduced that CT is programming and
problem-solving; that it involves the use of logic, algorithms, data manipulation,
and pattern recognition; and that it aids in prediction and improving efficiency.

The other two explicit definitions were most appropriately classified as mul-
tifaceted – a blend of conceptual and componential definitions. Allsop (2019)
described CT as a cognitive process regulated by metacognitive practices with
the aim of using computational concepts (i.e. sequences, loops, events, parallel-
ism, conditionals, operators, variables, abstraction) to automate solutions to
problems. According to Rodr�ıguez del Rey et al. (2021), “CT is a cognitive
process executed by humans for the resolution of diverse problems using com-
putational concepts” (p. 3). While both multifaceted definitions highlighted the
cognitive aspect of CT, which is consistent with the assumption of a relationship
between CT and logical thinking (Kim et al., 2013), we observed disparities in
their underlying CT concepts. Besides the overlapping abstraction, Rodr�ıguez
del Rey et al. (2021) implemented CT concepts differently, focusing on data
processing, decomposition, algorithms, generalisation, simulation, and
evaluation.

Explicit and Componential Definitions. Table 2 summarises the explicit componential
definitions of CT, which did not originate in another research. These definitions
expressed how the researchers operationalised CT in their studies without
wholly adopting pre-existing frameworks. Of course, this does not suggest
that the authors failed to situate their work in relation to existing frameworks.
Rather, these definitions reflected the meanings that the authors assigned to CT
based on their review of the literature. Although CT components varied across

14 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 495

the blurry understanding of CT and/or preference for using existing measure-
ment instruments.

Explicit and Conceptual Definitions. Surprisingly, only four articles provided explicit
conceptual/multifaceted definitions (Allsop, 2019; Kim et al., 2013; Rodr�ıguez
del Rey et al., 2021; Yadav et al., 2018). Kim et al. (2013) provided an explicit
conceptual definition, describing CT as “a sort of logical thinking every human
being has” (p. 443) in an experimental investigation of the effectiveness of paper-
and-pencil programming over Logo in preservice teachers’ classroom. They
measured the CT skills acquired by the preservice teachers using the Group
Assessment of Logical Thinking, an instrument designed primarily to measure
logical reasoning skills. This depicts that the authors inferred a strong associa-
tion between CT and logical thinking. Another explicit conceptual definition
was reported in a study of a professional development programme. Yadav et al.
(2018) defined CT as “the ways of thinking, or habits of mind, that computer
scientists use” (p. 379), which is consistent with Wing’s (2006) seminal interpre-
tation of CT. This broad definition was crafted to lead in-service teachers to
integrate CT with mathematics and science, reflecting on the meaning. Through
vignette challenges, Yadav et al. (2018) deduced that CT is programming and
problem-solving; that it involves the use of logic, algorithms, data manipulation,
and pattern recognition; and that it aids in prediction and improving efficiency.

The other two explicit definitions were most appropriately classified as mul-
tifaceted – a blend of conceptual and componential definitions. Allsop (2019)
described CT as a cognitive process regulated by metacognitive practices with
the aim of using computational concepts (i.e. sequences, loops, events, parallel-
ism, conditionals, operators, variables, abstraction) to automate solutions to
problems. According to Rodr�ıguez del Rey et al. (2021), “CT is a cognitive
process executed by humans for the resolution of diverse problems using com-
putational concepts” (p. 3). While both multifaceted definitions highlighted the
cognitive aspect of CT, which is consistent with the assumption of a relationship
between CT and logical thinking (Kim et al., 2013), we observed disparities in
their underlying CT concepts. Besides the overlapping abstraction, Rodr�ıguez
del Rey et al. (2021) implemented CT concepts differently, focusing on data
processing, decomposition, algorithms, generalisation, simulation, and
evaluation.

Explicit and Componential Definitions. Table 2 summarises the explicit componential
definitions of CT, which did not originate in another research. These definitions
expressed how the researchers operationalised CT in their studies without
wholly adopting pre-existing frameworks. Of course, this does not suggest
that the authors failed to situate their work in relation to existing frameworks.
Rather, these definitions reflected the meanings that the authors assigned to CT
based on their review of the literature. Although CT components varied across

14 Journal of Educational Computing Research 0(0)

the studies, several CT concepts (also referred to as dimensions, elements, var-

iables, skills, items, and subskills) overlapped. As reported in Table 2, while

there was no consensus on a definition of CT, the factors considered were

highly consistent, signifying that most of the CT components identified in
these studies were meaningfully aligned with computer science concepts and

practices. They were also consistent with sets of components identified in pre-

vious review articles, such as the five components (abstraction, decomposition,

algorithms, evaluation, generalisation) in Selby and Woollard (2013) and six

components (decomposition, abstraction, algorithms, debugging, iteration, gen-

eralisation) in Shute et al. (2017). Conceptual consistency denoted alignment

Table 2. Non-Referential, Explicit, and Componential Conceptualisations of Computational
Thinking (CT).

Author(s) Definition

Bers et al. (2014) CT variables – debugging, sequences, correspon-

dence, flow control

Yadav et al. (2014) CT concepts – problem identification, decompo-

sition, abstraction, logical thinking, algorithms,

debugging

Atmatzidou & Demetriadis (2016) CT dimensions – abstraction, generalisation,

algorithms, decomposition, modularity

Atmatzidou & Demetriadis (2017) CT concepts – abstraction, generalisation, algo-

rithms, decomposition, modularity, debugging

Looi et al. (2018) CT skills – decomposition, algorithms, abstrac-

tion, generalisation, evaluation

Witherspoon et al. (2018) CT concepts – sequences, conditionals, iteration

Tran (2019) CT concepts – sequences, algorithms, looping,

debugging, conditionals

Nam et al. (2019) Forms of CT – sequencing, problem solving

Calderon et al. (2020) CT elements – abstraction, decomposition, data,

algorithms, sequences

Chen et al. (2020) CT items – creativity, valuableness, simplification,

embedding, simulation, transformation

Angeli & Valanides (2020) CT elements – algorithm, sequencing, decompo-

sition, debugging

Noh & Lee (2020) CT components – data collection, data analysis,

structuring, decomposition, modelling, algo-

rithm, automation, generalisation

Yin et al. (2020) CT subskills – decomposition, abstraction, algo-

rithm, pattern generalisation

Uzumcu & Bay (2020) CT dimensions – problem understanding, flow-

chart, operators, conditionals, loops, parallel-

ism, decomposition, abstraction, pattern,

algorithms, evaluation, debugging

Ezeamuzie and Leung 15



496	 Journal of Educational Computing Research 60(2)

with computer science concepts and practices; not to be misconstrued or trans-
lated into accuracy of implementation in the studies. A notable exception to the
conceptual consistency was a study that explored the effects of an identification,
modelling, simulation, and prototyping teaching model in a college design
course (Chen et al., 2020). CT was operationalised in the assessment as a com-
posite value reflecting creativity, valuableness, simplification, embedding, sim-
ulation, and transformation.

Implicit and Componential Definitions. Besides the explicit componential definitions
in Table 2, we deduced implicit componential definitions in eight studies. For
example, in a study investigating the relationship between spatial reasoning and
CT with primary school students (Città et al., 2019), CT was not explicitly
framed. However, the CT test measured the students’ ability to write and inter-
pret algorithms on paper and CT was implicitly coded as a composite of sequen-
ces and algorithms.

Similarly, decomposition, abstraction, logic, and algorithms were implicit
components of CT in Price and Price-Mohr’s (2018) study. Although it is desir-
able to explicitly define constructs in educational research, the implicit compo-
nents of CT were generally consistent with the explicit components (see Table 2).
An exception to the consistency was González-González et al. (2019), who
included software and hardware amongst the components of CT. While these
were unconventional corpora of computer science concepts that are associated
with CT, it appears that the authors included these components to make the
learning intervention relatable to students with Down syndrome.

Implicit and Conceptual Definitions. The articles in this category (n¼ 13) asserted
that participants engaged in CT learning interventions and were assessed after-
wards. However, we could not deduce any explicit definitions or implied com-
ponents of CT from the articles. The teaching and learning of programming
represented the common trend in these studies, such as the use of Python pro-
gramming language to teach problem-solving and biological computational
techniques in a college bioscience course (Libeskind-Hadas & Bush, 2013).
Therefore, articles that focused on computer programming as a measure of
CT without an obvious meaning of CT were designated as offering implicit
conceptual definitions.

Basogain et al. (2018) reported the use of learning strategies such as blended
learning, constructionism, continuous assessment, feedback, portfolio creation,
and peer-to-peer assessment for CT study. As part of the learning and assess-
ment, the participants wrote programs in a visual drag-and-drop environment
and documented their learning in portfolios. Unfortunately, the features of the
rubric used in the peer-to-peer assessment were not described. Other related
studies compared how programming via virtual and physical robotic platforms
supported CT development in middle school (Berland & Wilensky, 2015) and

16 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 497

with computer science concepts and practices; not to be misconstrued or trans-
lated into accuracy of implementation in the studies. A notable exception to the
conceptual consistency was a study that explored the effects of an identification,
modelling, simulation, and prototyping teaching model in a college design
course (Chen et al., 2020). CT was operationalised in the assessment as a com-
posite value reflecting creativity, valuableness, simplification, embedding, sim-
ulation, and transformation.

Implicit and Componential Definitions. Besides the explicit componential definitions
in Table 2, we deduced implicit componential definitions in eight studies. For
example, in a study investigating the relationship between spatial reasoning and
CT with primary school students (Città et al., 2019), CT was not explicitly
framed. However, the CT test measured the students’ ability to write and inter-
pret algorithms on paper and CT was implicitly coded as a composite of sequen-
ces and algorithms.

Similarly, decomposition, abstraction, logic, and algorithms were implicit
components of CT in Price and Price-Mohr’s (2018) study. Although it is desir-
able to explicitly define constructs in educational research, the implicit compo-
nents of CT were generally consistent with the explicit components (see Table 2).
An exception to the consistency was González-González et al. (2019), who
included software and hardware amongst the components of CT. While these
were unconventional corpora of computer science concepts that are associated
with CT, it appears that the authors included these components to make the
learning intervention relatable to students with Down syndrome.

Implicit and Conceptual Definitions. The articles in this category (n¼ 13) asserted
that participants engaged in CT learning interventions and were assessed after-
wards. However, we could not deduce any explicit definitions or implied com-
ponents of CT from the articles. The teaching and learning of programming
represented the common trend in these studies, such as the use of Python pro-
gramming language to teach problem-solving and biological computational
techniques in a college bioscience course (Libeskind-Hadas & Bush, 2013).
Therefore, articles that focused on computer programming as a measure of
CT without an obvious meaning of CT were designated as offering implicit
conceptual definitions.

Basogain et al. (2018) reported the use of learning strategies such as blended
learning, constructionism, continuous assessment, feedback, portfolio creation,
and peer-to-peer assessment for CT study. As part of the learning and assess-
ment, the participants wrote programs in a visual drag-and-drop environment
and documented their learning in portfolios. Unfortunately, the features of the
rubric used in the peer-to-peer assessment were not described. Other related
studies compared how programming via virtual and physical robotic platforms
supported CT development in middle school (Berland & Wilensky, 2015) and

16 Journal of Educational Computing Research 0(0)

investigated the roles of bodily engagement and computational perspectives in
the learning of CT with a code-and-play application in primary school (Sung &
Black, 2020).

Although the authors’ intention in the studies in this category was to explore
CT, they focused on programming. While programming may be a viable
approach to learning CT (Lye & Koh, 2014), this focus blurred the boundary
between programming and CT.

Referential Definitions

Building on existing theories remains a cherished practice in research. By situ-
ating empirical investigations on sound frameworks, researchers add to the pool
of knowledge in systematic and meaningful ways. As stated earlier, the majority
(68.42%, n¼ 39) of articles within the explicitly defined category extracted CT
definitions from previous studies or frameworks. Of the 39 articles, 35.90%
(n¼ 14) gave these definitions in the theory section. On the other hand,
10.26% (n¼ 4) extracted their definitions from the implemented intervention,
while a remarkable 53.85% (n¼ 21) definitions were deduced from the
assessment.

Table 3 lists the frameworks cited by the articles in the final pool. Brennan
and Resnick’s (2012) framework was the most frequently cited. They framed CT
in three dimensions: concepts (i.e. the knowledge that designers have and apply
when they program), practices (i.e. what designers do when programming), and
perspectives (i.e., how designers see themselves and their environments). This
componential definition has been used to frame CT in diverse scenarios. For
example, it was adapted to design programming activities for teacher develop-
ment programmes in primary schools (Kong et al., 2020) and to understand
differences by gender in eye tracking when programming (Papavlasopoulou
et al., 2020). The prevalence of Brennan and Resnick’s (2012) framework may
not be unconnected with the wide adoption of Scratch. Scratch is a free block-
based visual programming platform for children, designed in compliance with
the ‘low threshold, high ceiling’ requirement for CT tools (Repenning et al.,
2010) and has several million users. The framework and scratch are linked
outputs of a design-based learning research at the Massachusetts Institute of
Technology.

As well as framing empirical studies, Brennan and Resnick’s (2012) frame-
work offers a reliable model for interpreting CT in review articles (e.g. Lye &
Koh, 2014; Zhang & Nouri, 2019). Underpinned by this framework, Lye and
Koh (2014) reviewed 27 empirical studies to unmask the connections between
CT and programming in K–12 education. Zhang and Nouri (2019) used the
framework to identify CT skills learned via K–9 Scratch in their systematic
review of 55 empirical studies. These researchers found that all of the compo-
nents of Brennan and Resnick’s (2012) framework were successfully captured in

Ezeamuzie and Leung 17



498	 Journal of Educational Computing Research 60(2)

the reviewed empirical studies. While CT concepts were predominantly explored

in the literature, CT perspectives were the least studied. Zhang and Nouri (2019)

identified additional skills in the literature missing from Brennan and Resnick’s

(2012) framework. They suggested revision of the framework that would add

input and output to CT concepts; user interaction to CT perspectives; and mul-

timodal design, predictive thinking, and the ability to read, interpret, and com-

municate code to the CT practice dimension. Whether to revise or not, these

suggestions revealed that there may still be unknown gaps in the framing of CT.

Table 3. Definition of Computational Thinking From the Referenced Literature.

Referenced article

Referencing

articles (n) Framing of computational thinking

Brennan & Resnick (2012) 14 CT concepts – sequences, loops, parallel-

ism, events, conditionals, operators, and

data

CT practices – incremental and iterative

design, testing and debugging, reusing

and remixing, and abstracting and mod-

ularising

CT perspectives – expressing, connecting,

and questioning

Moreno-Le�on et al. (2015) 8 Abstraction and problem decomposition,

logical thinking, synchronisation, paral-

lelism, algorithmic flow control, user

interactivity, and data representation.

Also referred to as Dr. Scratch.

Román-González et al.

(2017)

6 Sequences, loops, conditionals, functions,

and variables. Also referred to as

Computational Thinking Test (CTt).

Dagien _e & Sentance

(2016)

4 Abstraction, algorithms, decomposition,

evaluation, and generalisation. Also

referred to as Bebras task.

D. Barr et al. (2011), ISTE

& CSTA, (2011)

2 Problem solving that incorporates the

characteristics of problem formulation,

abstraction, logical thinking, algorithms,

efficiency, generalising, and transfer

Csizmadia et al. (2015),

Selby & Woollard

(2013)

2 Abstraction, decomposition, algorithms,

evaluation, and generalisation

Weintrop et al. (2016) 1 Data practice, simulation and modelling,

problem solving, system thinking

CMCCT (n.d.) 1 Abstraction, algorithms

Note. CMCCT¼Carnegie Mellon Center for Computational Thinking, CSTA¼Computer Science

Teachers Association, ISTE¼ International Society for Technology in Education.

18 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 499

the reviewed empirical studies. While CT concepts were predominantly explored

in the literature, CT perspectives were the least studied. Zhang and Nouri (2019)

identified additional skills in the literature missing from Brennan and Resnick’s

(2012) framework. They suggested revision of the framework that would add

input and output to CT concepts; user interaction to CT perspectives; and mul-

timodal design, predictive thinking, and the ability to read, interpret, and com-

municate code to the CT practice dimension. Whether to revise or not, these

suggestions revealed that there may still be unknown gaps in the framing of CT.

Table 3. Definition of Computational Thinking From the Referenced Literature.

Referenced article

Referencing

articles (n) Framing of computational thinking

Brennan & Resnick (2012) 14 CT concepts – sequences, loops, parallel-

ism, events, conditionals, operators, and

data

CT practices – incremental and iterative

design, testing and debugging, reusing

and remixing, and abstracting and mod-

ularising

CT perspectives – expressing, connecting,

and questioning

Moreno-Le�on et al. (2015) 8 Abstraction and problem decomposition,

logical thinking, synchronisation, paral-

lelism, algorithmic flow control, user

interactivity, and data representation.

Also referred to as Dr. Scratch.

Román-González et al.

(2017)

6 Sequences, loops, conditionals, functions,

and variables. Also referred to as

Computational Thinking Test (CTt).

Dagien _e & Sentance

(2016)

4 Abstraction, algorithms, decomposition,

evaluation, and generalisation. Also

referred to as Bebras task.

D. Barr et al. (2011), ISTE

& CSTA, (2011)

2 Problem solving that incorporates the

characteristics of problem formulation,

abstraction, logical thinking, algorithms,

efficiency, generalising, and transfer

Csizmadia et al. (2015),

Selby & Woollard

(2013)

2 Abstraction, decomposition, algorithms,

evaluation, and generalisation

Weintrop et al. (2016) 1 Data practice, simulation and modelling,

problem solving, system thinking

CMCCT (n.d.) 1 Abstraction, algorithms

Note. CMCCT¼Carnegie Mellon Center for Computational Thinking, CSTA¼Computer Science

Teachers Association, ISTE¼ International Society for Technology in Education.

18 Journal of Educational Computing Research 0(0)

One article (Newton et al., 2020) referenced Repenning et al. (2015) as the

framework for analysing CT in students’ games but assessed abstraction, algo-

rithms, and learning transfer as factors of CT. The authors presented these

factors as the summative categories from the CT pattern of Repenning et al.

(2015). Other frameworks cited included Dr. Scratch (Moreno-Le�on et al.,

2015), CT test (Román-González et al., 2017), and Bebras (Dagien _e &

Sentance, 2016). These three models were used in 46.15% of the articles that

defined CT referentially. Collectively, their designs incorporated measurement

instruments for CT, especially Dr. Scratch, which automatically analyses

Scratch projects. A substantial number of articles adopted these frameworks,

along with the 53.85% of the articles that defined CT in the assessment section.

This supports our initial observation that referential definitions may be linked to

the blurry understanding of CT and/or preference for using existing measure-

ment instruments.

Components of Computational Thinking

Of the reviewed articles, 75.31% (n¼ 61) interpreted CT as a collection of con-

structs and components. This interpretation was shared by most of the research-

ers but contrasted with the definitions in the remaining articles – 13 conceptually

framed CT as programming, 4 offered explicit conceptual definitions of CT, and

3 did not define CT. As most of the researchers operationalised CT as a com-

posite of components, we were persuaded to query which components were

associated with CT.
Based on a significance level of 0.05, we classified components that appeared

in more than 5% of the articles as significant. In contrast, non-significant com-

ponents were those that appeared in fewer than 5% of the articles. Table 4

shows the aggregated frequency of the observed components and Figure 2 is a

simple word cloud visualisation of the components of CT. In a word cloud, the

font weight of a word is directly proportional to its frequency.
The components identified as significant, such as abstraction, sequences,

algorithms, decomposition, and debugging, are prominent dimensions of

common CT models (e.g. Brennan & Resnick, 2012; ISTE & CSTA, 2011;

Shute et al., 2017). Although the significant components seemed to overlap

with the existing models, the sizeable number of non-significant components

explains the challenges in delineating a CT model. Given that computer science

concepts are infinite, variations in the components and definitions of CT are

likely to persist.

The Boundary Between Computational Thinking and Programming

An overwhelming 77.78% (n¼ 63) of the interventions were based on the learn-

ing of programming. Moreover, 33.33% (n¼ 27) of the studies assessed learners’

Ezeamuzie and Leung 19



500	 Journal of Educational Computing Research 60(2)

Table 4. Significant vs. Non-significant Components of Computational Thinking in the
Literature.

Significant components (n) Non-significant components

Abstraction (38), sequence (31),

conditional (26), algorithm (24),

loop (23), parallelism (23),

debugging (22), data (20),

decomposition (16), event (15),

iteration (15), modularity (14),

testing (13), logic (12), operator

(12), remixing (12), reusing (12),

generalisation (11), flow control

(9), evaluation (8), synchronisa-

tion (8), user interactivity (8),

variable (5), function (4)

Transfer, design, efficiency, modelling, pattern,

problem formulation, problem solving, simula-

tion, system thinking, app originality, automa-

tion, causal inference, clear instruction,

control, correspondence, creativity, data anal-

ysis, data collection, develop, embedding,

experimentation, expressions, extraneous

block, flowchart, functionality, hardware,

instruction, keyboard input, list, object, oper-

ators, planning, problem identification, problem

understanding, programming, random number,

representation, robot programming, simplifica-

tion, software, sprite customisation, sprite

name, stage customisation, structuring, trans-

formation, use, user interface, valuableness

Figure 2. Word Cloud Representation of the Components of Computational Thinking.

20 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 501

programming artefacts. Examples include the acquisition of CT through pro-

gramming with Scratch in an extracurricular computing programme that inves-

tigated the effects of repeated participation (Mouza et al., 2020), the learning of

CT through Python programming in an undergraduate bioscience course

(Libeskind-Hadas & Bush, 2013), and the programming of robots as part of

the development of a CT instrument (Chen et al., 2017). The above finding is

consistent with the observation that programming is the main method of teach-

ing and learning CT (Lye & Koh, 2014). However, the distinction between CT

and programming was narrow in these studies, especially when the most prom-

inent feature of CT is “conceptualizing, not programming” (Wing, 2006, p. 35).
There is a near consensus among researchers that CT is a thinking style for

solving problems with or without programming. We discovered that the mean-

ing of CT in the reviewed articles’ theoretical discussions often did not match the

operationalised meaning. Conceptually, the researchers understood that CT is

not equivalent to programming. However, several studies assessed CT through

programming artefacts. Some studies that did not require learners to write com-

puter programs nevertheless assessed learners’ knowledge of programming con-

cepts as a measure of CT through tests.
Understanding what Wing (2006) meant by “drawing on the concepts fun-

damental to computer science” (p. 33) illuminates the overlap between CT and

programming. Computer science is overly broad. Its branches include but are

not limited to databases, networking, software engineering, graphics, artificial

intelligence, virtual reality, cryptography, and computer security (V. Barr &

Stephenson, 2011). Professionals in different branches of computer science

require different skill sets. For example, the knowledge and skills required for

the effective practice of cryptography versus artificial intelligence are different.

Nevertheless, the different branches of computer science require some common

skills, such as programming, from practitioners. Indeed, programming is an

indisputable learning module and essential skill for every computer scientist.
Considering the diverse nature of computer science, only a subset of the

concepts and practices in this domain may qualify as components of CT.

Otherwise, various computer science concepts that did not appear in our anal-

ysis of componential definitions (e.g. inheritance, encapsulation, and polymor-

phism), could justifiably be included as components of CT in future studies.

Table 4 shows the components of CT that were extracted from the reviewed

empirical studies. In our view, these components closely reflect the program-

ming concepts that computer scientists use to solve problems, irrespective of the

specific domain. Therefore, we deduce that these programming concepts are

most appropriate for describing CT. This also explains the close association

between CT and programming. By ‘programming’, we mean not only writing

code (coding) but also the series of activities involved in software engineering,

from ideation to production and from problem statement to problem solution.

Ezeamuzie and Leung 21



502	 Journal of Educational Computing Research 60(2)

Summarising the Computational Thinking Frameworks

Here, we summarise what the systematic review of the literature taught us about
definitions and operationalisation of CT. Based on these findings, we adduce a
definition to explain and frame the nature of CT. This definition was deduced

from two principles on which researchers have generally agreed. The first prin-
ciple is that CT is a skill underpinned by computer science concepts. Concisely,
programming concepts are the underlying support for CT. The second principle

positions CT as a relevant cognitive skill that is transferable to problem solving
in other domains. We emphasise ‘other domains’ because this differentiates CT
from programming. Otherwise, CT may not be much more than a reinvention of

programming. Undoubtedly, programming is a useful skill and will remain a
core method of acquiring CT. However, the ability to use this skill for everyday
problem solving distinguishes CT from programming.

Therefore, we understood CT as the cognitive skill required to design algo-
rithmic solutions for problems in different knowledge areas. By ‘algorithmic
solution’, we refer to the “series of steps that control some abstract machine

or computational model without requiring human judgement” (Denning, 2017,
p. 33). This helps to distinguish an algorithm from just any sequence of steps.

What constitutes programming concepts varies greatly (see Table 4) and
cannot be conclusively bound in a finite list. Moreover, some concepts can be
operationalised in diverse ways. For example, abstraction is a key concept in

programming (Kramer, 2007), generally understood as the practice of focusing
on major details while concealing the peripherals. However, abstraction occurs
with different degrees of granularity, and practices such as modularisation,

problem decomposition, pattern generation, and problem formulation are all
forms of abstraction. Therefore, our definition emphasises the development of
algorithmic solutions whereby learners draw on their knowledge of program-
ming concepts in non-isolated approach.

Conclusions and Implications

We embarked on this review with the goal of identifying ambiguities and gaining

clarity in the operationalisation of CT; a 21st century skill for navigating daily
procedural tasks efficiently and a cognitive ability transferable to problem solv-
ing in other domains (Denning, 2017). How have researchers operationalised CT

in empirical studies? In our own practice, we have long faced the challenge of
distinguishing between CT and computer programming. Indeed, this is not
peculiar particular and has often been acknowledged in the CT literature. For

example, consider how Nardelli (2019) described Wing’s (2006) seminal article
as a call to “start rolling the ball” towards the introduction of computer science
and informatics for all school students (p. 33). While acknowledging Nardelli’s
(2019) argument that it may be risky to emphasise a few aspects of Wing’s (2006)

22 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 503

model and promote CT as a distinct subject, alternative interpretations – such as
the idea that CT is for everyone, not only computer scientists – cannot be
overlooked when programming and computer science are distinct subjects
with considerable high cognitive demand.

To highlight the educational implications of this review, we must acknowl-
edge its limitations and delimitations. The major constraint we established was
the exclusion of studies that did not address the learning and assessment of CT.
We also restricted our search to peer-reviewed articles. Inevitably, these delim-
itations excluded reviews and theoretical literature. These decisions led to the
exclusion of some articles that may have offered additional insights into the
subject. For example, Zhong et al. (2016) investigated how pair programming
aided in the development of CT, but their study was excluded because it did not
measure CT. However, our decision to impose these delimitations was strongly
tied to our core inquiry into the definitions and operationalisation of CT in
empirical studies. Therefore, without diminishing the roles of reviews and the-
oretical articles in framing this exercise, they were justifiably excluded from the
main investigation.

Although we positioned our review based on Wing (2006), Papert’s (1980)
constructionist approach suggests that children can develop a special reasoning
style through the epistemic practice of teaching computers to think, which can
increase children’s confidence in solving problems with different cognitive styles.
In our interpretation, teaching computers to think is analogous to computer
programming, and the reasoning style described by Papert (1980) is equivalent
to CT as described by Wing (2006). CT derives its popularity from the consensus
that it is not limited to programming but a cognitive skill for everyone that is
transferable to other learning domains. However, most studies in this area have
concentrated on programming. Although it is indisputable that a strong associ-
ation exists between CT and programming, future research should explore other
ways in which CT can be operationalised and transferred to other domains.

Most of the reviewed studies framed CT as a combination of concepts, such
as abstraction, algorithms, decomposition, and sequences. While the compo-
nents varied considerably, they were aligned with the concepts that computer
scientists use when writing computer programs to solve a problem. In future
research, it would be desirable to investigate whether the components of CT are
consistently operationalised both within and between studies. Also, exploring
the correlation of the different operationalization of CT and educational out-
comes will deepen understanding of CT. Considering the sizeable number of
definitions deduced from the interventions or assessment instruments, research-
ers will add clarity to CT operationalisation by explicitly stating their theoretical
position.

Our overarching aim in seeking definitional clarity was to enhance the teach-
ing, learning, and assessment of CT. As stated earlier, our objective was not to
seek a consensus on a definition of CT. In fact, based on our analysis of the

Ezeamuzie and Leung 23



504	 Journal of Educational Computing Research 60(2)

trends in componential definitions, there is no sign of convergence in the liter-
ature. We propose a definition that focuses on algorithmic problem solving,
supported by various programming concepts. Within this framing, CT can be
effectively integrated with learning effectively without focusing on individual
concepts in isolation. Thereby, researchers and instructors can avoid common
pitfalls in conceptualising CT.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research,

authorship, and/or publication of this article.

Funding

The authors received no financial support for the research, authorship, and/or publica-

tion of this article.

ORCID iDs

Ndudi O. Ezeamuzie https://orcid.org/0000-0001-8946-5709
Jessica S. C. Leung https://orcid.org/0000-0002-6299-8158

Supplemental material

Supplemental material for this article is available online.

References

Alexander, P. A. (2020). Methodological guidance paper: The art and science of quality

systematic reviews. Review of Educational Research, 90(1), 6–23. https://doi.org/10.

3102/0034654319854352
Allsop, Y. (2019). Assessing computational thinking process using a multiple evaluation

approach. International Journal of Child-Computer Interaction, 19, 30–55. https://doi.

org/10.1016/j.ijcci.2018.10.004
Angeli, C., & Valanides, N. (2020). Developing young children’s computational thinking

with educational robotics: An interaction effect between gender and scaffolding strategy.
Computers in Human Behavior, 105, 105954. https://doi.org/10.1016/j.chb.2019.03.018

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking

skills through educational robotics: A study on age and gender relevant differences.

Robotics and Autonomous Systems, 75, 661–670.
Atmatzidou, S., & Demetriadis, S. (2017). A didactical model for educational robotics

activities: A study on improving skills through strong or minimal guidance. In: D.

Alimisis, M. Moro, & E. Menegatti (Eds.), Educational robotics in the makers era

(pp. 58–72). Springer.
Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill

for everyone. Learning Leading with Technology, 38(6), 20–23.
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is

involved and what is the role of the computer science education community? ACM

Inroads, 2(1), 48–54.

24 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 505

Basogain, X., Olabe, M. �A., Olabe, J. C., & Rico, M. J. (2018). Computational thinking

in pre-university blended learning classrooms. Computers in Human Behavior, 80,

412–419. https://doi.org/10.1016/j.chb.2017.04.058
Berland, M., & Wilensky, U. (2015). Comparing virtual and physical robotics

environments for supporting complex systems and computational thinking. Journal

of Science Education and Technology, 24(5), 628–647. https://doi.org/10.1007/s10956-

015-9552-x
Bers, M. U. (2017). Coding as a playground: Programming and computational thinking in

the early childhood classroom. Routledge.
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational think-

ing and tinkering: Exploration of an early childhood robotics curriculum. Computers

& Education, 72(C), 145–157.
Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016).

Developing computational thinking in compulsory education—Implications for policy

and practice. Publications Office of the European Union. https://doi.org/10.2791/

792158
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. Proceedings of the 2012 Annual Meeting of

the American Educational Research Association, 1, 1–25.
Buitrago Fl�orez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G.

(2017). Changing a generation’s way of thinking: Teaching computational thinking

through programming. Review of Educational Research, 87(4), 834–860.
Bull, G., Garofalo, J., & Hguyen, N. R. (2020). Thinking about computational thinking.

Journal of Digital Learning in Teacher Education, 36(1), 6–18. https://doi.org/10.1080/

21532974.2019.1694381
Calderon, A. C., Skillicorn, D., Watt, A., & Perham, N. (2020). A double

dissociative study into the effectiveness of computational thinking. Education and

Information Technologies, 25(2), 1181–1192. https://doi.org/10.1007/s10639-019-

09991-3
Carnegie Mellon Center for Computational Thinking. (n.d.). What is computational

thinking? https://www.cs.cmu.edu/�CompThink/index.html
Chang, C.-K. (2014). Effects of using Alice and scratch in an introductory programming

course for corrective instruction. Journal of Educational Computing Research, 51(2),

185–204. https://doi.org/10.2190/EC.51.2.c

Chen, G., He, Y., & Yang, T. (2020). An ISMP approach for promoting design innova-

tion capability and its interaction with personal characters. IEEE Access, 8,

161304–161316. https://doi.org/10.1109/ACCESS.2020.3019290
Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017).

Assessing elementary students’ computational thinking in everyday reasoning and

robotics programming. Computers & Education, 109, 162–175. https://doi.org/10.

1016/j.compedu.2017.03.001
Città, G., Gentile, M., Allegra, M., Arrigo, M., Conti, D., Ottaviano, S., Reale, F., &

Sciortino, M. (2019). The effects of mental rotation on computational thinking.

Computers & Education, 141, 103613. https://doi.org/10.1016/j.compedu.2019.103613
Clarivate Analytics. (n.d.). Web of science core collection. https://clarivate.com/webofs

ciencegroup/solutions/web-of-science/

Ezeamuzie and Leung 25



506	 Journal of Educational Computing Research 60(2)

Corradini, I., Lodi, M., & Nardelli, E. (2017). Conceptions and misconceptions about

computational thinking among Italian primary school teachers. In: J. Tenenberg, D.

Chinn, J. Sheard, & L. Malmi (Eds.), Proceedings of the 2017 ACM conference on

international computing education research (pp. 136–144). ACM. https://doi.org/

10.1145/3105726.3106194
Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard,

J. (2015). Computational thinking: A guide for teachers. https://eprints.soton.ac.uk/

424545/
Cutumisu, M., Adams, C., & Chang, L. (2019). A scoping review of empirical research on

recent computational thinking assessments. Journal of Science Education and

Technology, 28(6), 651–676. https://doi.org/10.1007/s10956-019-09799-3
Czerkawski, B. C., & Lyman, E. W. (2015). Exploring issues about computational think-

ing in higher education. TechTrends, 59(2), 57–65. https://doi.org/10.1007/s11528-015-

0840-3
Dagien_e, V., & Sentance, S. (2016). It’s computational thinking! Bebras tasks in the

curriculum. In: A. Brodnik & F. Tort (Eds.), Informatics in schools: Improvement of

informatics knowledge and perception (pp. 28–39). Springer. https://doi.org/10.1007/

978-3-319-46747-4_3
Denner, J., Campe, S., & Werner, L. (2019). Does computer game design and program-

ming benefit children? A meta-synthesis of research. ACM Transactions on Computing

Education, 19(3), 1–35. https://doi.org/10.1145/3277565
Denning, P. J. (2017). Remaining trouble spots with computational thinking.

Communications of the ACM, 60(6), 33–39. https://doi.org/10.1145/2998438
Dinsmore, D. L., Alexander, P. A., & Loughlin, S. M. (2008). Focusing the conceptual

lens on metacognition, self-regulation, and self-regulated learning. Educational

Psychology Review, 20(4), 391–409. https://doi.org/10.1007/s10648-008-9083-6
Elsevier. (n.d.). Getting the most out of published research. https://www.elsevier.com/sol

utions/scopus/how-scopus-works
González-González, C. S., Herrera-González, E., Moreno-Ruiz, L, Reyes-Alonso, N.,

Hernández-Morales, S., Guzmán-Franco, M. D., & Infante-Moro, A. (2019).

Computational thinking and down syndrome: An exploratory study using the

KIBO robot. Informatics, 6(2), 25. https://doi.org/10.3390/informatics6020025
Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of

the field. Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/

0013189X12463051
Guzdial, M. (2008). Paving the way for computational thinking. Communications of the

ACM, 51(8), 25–27. https://doi.org/10.1145/1378704.1378713
Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach com-

putational thinking: Suggestions based on a review of the literature. Computers &

Education, 126, 296–310. https://doi.org/10.1016/j.compedu.2018.07.004
International Society for Technology in Education. (2016). ISTE standards for students.

https://www.iste.org/standards/for-students
International Society for Technology in Education, & Computer Science Teachers

Association. (2011). Operational definition of computational thinking for K-12 educa-

tion. http://www.iste.org/docs/ct-documents/computational-thinking-operational-defi

nition-flyer.pdf?sfvrsn=2

26 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 507

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all

learners in school-wide computational thinking: A cross-case qualitative analysis.

Computers & Education, 82, 263–279. https://doi.org/10.1016/j.compedu.2014.11.022

Kalelio�glu, F. (2015). A new way of teaching programming skills to K-12 students: Code.org.

Computers in Human Behavior, 52, 200–210. https://doi.org/10.1016/j.chb.2015.05.047
Kim, B., Kim, T., & Kim, J. (2013). Paper-and-pencil programming strategy toward

computational thinking for non-majors: Design your solution. Journal of

Educational Computing Research, 49(4), 437–459. https://doi.org/10.2190/EC.49.4.b
Knuth, D. E. (1974). Computer science and its relation to mathematics. The American

Mathematical Monthly, 81(4), 323–343. https://doi.org/10.1080/00029890.1974.11993556
Kong, S.-C., Chiu, M. M., & Lai, M. (2018). A study of primary school students’ interest,

collaboration attitude, and programming empowerment in computational thinking

education. Computers & Education, 127, 178–189. https://doi.org/10.1016/j.com

pedu.2018.08.026
Kong, S.-C., Lai, M., & Sun, D. (2020). Teacher development in computational thinking:

Design and learning outcomes of programming concepts, practices and pedagogy.

Computers & Education, 151, 103872. https://doi.org/10.1016/j.compedu.2020.103872

Kong, S.-C., & Lao, A. C.-C. (2019). Assessing in-service teachers’ development of com-

putational thinking practices in teacher development courses. In: E. K. Hawthorne,

M. A. P�erez-Qui~nones, S. Heckman, & J. Zhang (Eds.), Proceedings of the 50th ACM

technical symposium on computer science education (pp. 976–982). ACM. https://doi.

org/10.1145/3287324.3287470
Korkmaz, €O., Çakir, R., & €Ozden, M. Y. (2017). A validity and reliability study of the

computational thinking scales (CTS). Computers in Human Behavior, 72, 558–569.

https://doi.org/10.1016/j.chb.2017.01.005
Kramer, J. (2007). Is abstraction the key to computing? Communications of the ACM,

50(4), 36–42. https://doi.org/10.1145/1232743.1232745
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., &

Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads, 2(1),

32–37. https://doi.org/10.1145/1929887.1929902

Leonard, A. E., Daily, S. B., J€org, S., & Babu, S. V. (2021). Coding moves: Design and

research of teaching computational thinking through dance choreography and virtual

interactions. Journal of Research on Technology in Education, 53(2), 159–119. https://

doi.org/10.1080/15391523.2020.1760754
Libeskind-Hadas, R., & Bush, E. (2013). A first course in computing with applications to

biology. Briefings in Bioinformatics, 14(5), 610–617. https://doi.org/10.1093/bib/

bbt005
Liu, C.-C., Chen, W.-C., Lin, H.-M., & Huang, Y.-Y. (2017). A remix-oriented approach

to promoting student engagement in a long-term participatory learning program.

Computers & Education, 110, 1–15. https://doi.org/10.1016/j.compedu.2017.03.002
Looi, C.-K., How, M.-L., Longkai, W., Seow, P., & Liu, L. (2018). Analysis of linkages

between an unplugged activity and the development of computational thinking.

Computer Science Education, 28(3), 255–279. https://doi.org/10.1080/08993408.2018.

1533297
Lu, J. J., & Fletcher, G. H. L. (2009). Thinking about computational thinking. ACM

SIGCSE Bulletin, 41(1), 260–264. https://doi.org/10.1145/1539024.1508959

Ezeamuzie and Leung 27



508	 Journal of Educational Computing Research 60(2)

Luo, F., Antonenko, P. D., & Davis, E. C. (2020). Exploring the evolution of two girls’

conceptions and practices in computational thinking in science. Computers &

Education, 146, 103759. https://doi.org/10.1016/j.compedu.2019.103759
Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational

thinking through programming: What is next for K-12? Computers in Human

Behavior, 41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012
Menekse, M. (2015). Computer science teacher professional development in the United

States: A review of studies published between 2004 and 2014. Computer Science

Education, 25(4), 325–350. https://doi.org/10.1080/08993408.2015.1111645
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items

for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine,

6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
Moreno-Le�on, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Automatic anal-

ysis of scratch projects to assess and foster computational thinking. Revista de Educaci�on

a Distancia, 46(10), 1–23. https://doi.org/10.6018/red/46/10
Mouza, C., Pan, Y.-C., Yang, H., & Pollock, L. (2020). A multiyear investigation of

student computational thinking concepts, practices, and perspectives in an after-

school computing program. Journal of Educational Computing Research, 58(5),

1029–1056. https://doi.org/10.1177/0735633120905605
Munoz, R., Villarroel, R., Barcelos, T. S., Riquelme, F., Quezada, A., & Bustos-

Valenzuela, P. (2018). Developing computational thinking skills in adolescents with

autism spectrum disorder through digital game programming. IEEE Access, 6,

63880–63889. https://doi.org/10.1109/access.2018.2877417
Murphy, P. K., & Alexander, P. A. (2000). A motivated exploration of motivation ter-

minology. Contemporary Educational Psychology, 25(1), 3–53. https://doi.org/10.1006/

ceps.1999.1019
Nam, K. W., Kim, H. J., & Lee, S. (2019). Connecting plans to action: The effects of a card-

coded robotics curriculum and activities on Korean kindergartners. The Asia-Pacific

Education Researcher, 28(5), 387–397. https://doi.org/10.1007/s40299-019-00438-4
Nardelli, E. (2019). Do we really need computational thinking? Communications of the

ACM, 62(2), 32–35. https://doi.org/10.1145/3231587
National Research Council. (2013). Next generation science standards: For states, by

states. The National Academies Press. https://doi.org/10.17226/18290
Newton, K. J., Leonard, J., Buss, A., Wright, C. G., & Barnes-Johnson, J. (2020).

Informal STEM: Learning with robotics and game design in an urban context.

Journal of Research on Technology in Education, 52(2), 129–147. https://doi.org/10.

1080/15391523.2020.1713263
Noh, J., & Lee, J. (2020). Effects of robotics programming on the computational thinking

and creativity of elementary school students. Educational Technology Research and

Development, 68(1), 463–484. https://doi.org/10.1007/s11423-019-09708-w
Papavlasopoulou, S., Sharma, K., & Giannakos, M. N. (2020). Coding activities for

children: Coupling eye-tracking with qualitative data to investigate gender differences.

Computers in Human Behavior, 105, 105939. https://doi.org/10.1016/j.chb.2019.03.003

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
Popat, S., & Starkey, L. (2019). Learning to code or coding to learn? A systematic review.

Computers & Education, 128, 365–376. https://doi.org/10.1016/j.compedu.2018.10.005

28 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 509

Price, C. B., & Price-Mohr, R. M. (2018). An evaluation of primary school children

coding using a text-based language (java). Computers in the Schools, 35(4), 284–301.

https://doi.org/10.1080/07380569.2018.1531613
Psycharis, S., & Kallia, M. (2017). The effects of computer programming on high school

students’ reasoning skills and mathematical self-efficacy and problem solving.

Instructional Science, 45(5), 583–602. https://doi.org/10.1007/s11251-017-9421-5
Repenning, A. (2012). Programming goes back to school. Communications of the ACM,

55(5), 38–40. https://doi.org/10.1145/2160718.2160729
Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the devel-

opment of a checklist for getting computational thinking into public schools. In: G.

Lewandowski, S. Wolfman, T. J. Cortina, & E. L. Walker (Eds.), Proceedings of the

41st ACM technical symposium on computer science education (pp. 265–269). ACM.

https://doi.org/10.1145/1734263.1734357
Repenning, A., Webb, D. C., Koh, K. H., Nickerson, H., Miller, S. B., Brand, C.,

Horses, I. H. M., Basawapatna, A., Gluck, F., Grover, R., Gutierrez, K., &

Repenning, N. (2015). Scalable game design: A strategy to bring systemic computer

science education to schools through game design and simulation creation. ACM

Transactions on Computing Education, 15(2), 1–31. https://doi.org/10.1145/2700517
Rodr�ıguez del Rey, Y. A., Cawanga Cambinda, I. N., Deco, C., Bender, C., Avello-

Mart�ınez, R., & Villalba-Condori, K. O. (2021). Developing computational thinking

with a module of solved problems. Computer Applications in Engineering Education,

29(3), 506–511. https://doi.org/10.1002/cae.22214
Román-González, M., P�erez-González, J.-C., & Jim�enez-Fernández, C. (2017). Which

cognitive abilities underlie computational thinking? Criterion validity of the compu-

tational thinking test. Computers in Human Behavior, 72, 678–691. https://doi.org/10.

1016/j.chb.2016.08.047
Rothstein, H. R., & Hopewell, S. (2009). Grey literature. In: H. Cooper, L. V. Hedges, &

J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed.,

pp. 103–125). Russell Sage Foundation.
Rowe, E., Asbell-Clarke, J., Baker, R., Gasca, S., Bardar, E., & Scruggs, R. (2018).

Labeling implicit computational thinking in pizza pass gameplay. In: R. Mandryk,

M. Hancock, M. Perry, & A. Cox (Eds.), Extended abstracts of the 2018 CHI confer-

ence on human factors in computing systems (pp. 1–6). ACM. https://doi.org/10.1145/

3170427.3188541
Scherer, R., Siddiq, F., & Viveros, B. S. (2019). The cognitive benefits of learning com-

puter programming: A meta-analysis of transfer effects. Journal of Educational

Psychology, 111(5), 764–792. https://doi.org/10.1037/edu0000314
Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition.

https://eprints.soton.ac.uk/356481/
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational

thinking. Educational Research Review, 22, 142–158. https://doi.org/10.1016/j.

edurev.2017.09.003
Singer, L. M., & Alexander, P. A. (2017). Reading on paper and digitally: What the past

decades of empirical research reveal. Review of Educational Research, 87(6),

1007–1041. https://doi.org/10.3102/0034654317722961
Sung, W., & Black, J. B. (2020). Factors to consider when designing effective learning:

Infusing computational thinking in mathematics to support thinking-doing. Journal of

Ezeamuzie and Leung 29



510	 Journal of Educational Computing Research 60(2)

Research on Technology in Education. Advance online publication. https://doi.org/10.
1080/15391523.2020.1784066

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational
thinking: A systematic review of empirical studies. Computers & Education, 148,

103798. https://doi.org/10.1016/j.compedu.2019.103798
Taylor, K., & Baek, Y. (2019). Grouping matters in computational robotic activities.

Computers in Human Behavior, 93, 99–105. https://doi.org/10.1016/j.chb.2018.12.010
Tissenbaum, M., Sheldon, J., & Abelson, H. (2019). From computational thinking to

computational action. Communications of the ACM, 62(3), 34–36. https://doi.org/10.
1145/3265747

Tran, Y. (2019). Computational thinking equity in elementary classrooms: What third-
grade students know and can do. Journal of Educational Computing Research, 57(1),
3–31. https://doi.org/10.1177/0735633117743918

Uzumcu, O., & Bay, E. (2020). The effect of computational thinking skill program design
developed according to interest driven creator theory on prospective teachers.
Education and Information Technologies. Advance online publication. https://doi.
org/10.1007/s10639-020-10268-3

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking
in compulsory education: Towards an agenda for research and practice. Education and
Information Technologies, 20(4), 715–728. https://doi.org/10.1007/s10639-015-9412-6

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U.
(2016). Defining computational thinking for mathematics and science classrooms.
Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.
1007/s10956-015-9581-5

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
https://doi.org/10.1145/1118178.1118215

Witherspoon, E. B., Schunn, C. D., Higashi, R. M., & Shoop, R. (2018). Attending to
structural programming features predicts differences in learning and motivation.
Journal of Computer Assisted Learning, 34(2), 115–128. https://doi.org/10.1111/jcal.
12219

Wong, G. K., & Jiang, S. (2018). Computational thinking education for children:
Algorithmic thinking and debugging. In: M. J. W. Lee, S. Nikolic, M. Ros, J. Shen,
L. C. U. Lei, G. K. W. Wong, & N. Venkatarayalu (Eds.), 2018 IEEE international

conference on teaching, assessment, and learning for engineering (pp. 328–334). IEEE.
https://doi.org/10.1109/TALE.2018.8615232

Xia, L., & Zhong, B. (2018). A systematic review on teaching and learning robotics
content knowledge in K-12. Computers & Education, 127, 267–282. https://doi.org/

10.1016/j.compedu.2018.09.007
Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all:

Pedagogical approaches to embedding 21st century problem solving in K-12 class-
rooms. TechTrends, 60(6), 565–568. https://doi.org/10.1007/s11528-016-0087-7

Yadav, A., Krist, C., Good, J., & Caeli, E. N. (2018). Computational thinking in ele-
mentary classrooms: Measuring teacher understanding of computational ideas for
teaching science. Computer Science Education, 28(4), 371–400. https://doi.org/10.
1080/08993408.2018.1560550

30 Journal of Educational Computing Research 0(0)



Ezeamuzie and Leung	 511

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational
thinking in elementary and secondary teacher education. ACM Transactions on
Computing Education, 14(1), 1–16. https://doi.org/10.1145/2576872

Yin, Y., Hadad, R., Tang, X., & Lin, Q. (2020). Improving and assessing computational
thinking in maker activities: The integration with physics and engineering learning.
Journal of Science Education and Technology, 29(2), 189–126. https://doi.org/10.1007/
s10956-019-09794-8

Yu, J., & Roque, R. (2019). A review of computational toys and kits for young children.
International Journal of Child-Computer Interaction, 21, 17–36. https://doi.org/10.
1016/j.ijcci.2019.04.001

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking
through scratch in K-9. Computers & Education, 141, 103607. https://doi.org/10.1016/
j.compedu.2019.103607

Zhong, B., Wang, Q., & Chen, J. (2016). The impact of social factors on pair program-
ming in a primary school. Computers in Human Behavior, 64, 423–431. https://doi.org/
10.1016/j.chb.2016.07.017

Author Biographies

Ndudi O. Ezeamuzie is a doctoral student in the Faculty of Education, The
University of Hong Kong. He is also a computer scientist with research interest
in computational thinking and programming in the context of STEM education.

Jessica S. C. Leung is an assistant professor in the Faculty of Education, The
University of Hong Kong. Her current research interest, among other things, is
epistemic practice and its development, in particular, within the context of sci-
ence and STEM education.

Ezeamuzie and Leung 31


