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Computer programming provides a framework for interdisciplinary learning in 
sciences, arts and languages. However, increasing integration of programming 
in K–12 shows that the block-based and text-based dichotomy of programming 
environments does not reflect the spectrum of their affordance. Hence, educa-
tors are confronted with a fundamental hurdle of matching programming envi-
ronments with learners’ cognitive abilities and learning objectives. This study 
addresses this challenge by analyzing 111 articles evaluating the affordances of 
programming environments to identify both structural and theoretical models to 
support educators’ choice of programming environments. The following dimen-
sions of programming environments were identified: connectivity mode, inter-
face natural language, language inheritance, age appropriateness, cost of 
environment, output interface, input interface, and project types. For each of 
these dimensions, the synthesis of the literature ranged from examining its 
nature and effect on learning programming to the implications of choosing an 
environment and the critical gaps that future studies should address. The find-
ings offer instructors useful parameters to compare and assess programming 
environments’ suitability and alignment with learning objectives.

Keywords From ScholarOne

Substantive:		�  Computers and Learning, Engineering Education, Instructional 
Technologies, Interdisciplinary Teaching and Research, 
Learning Environments, Technology

Methodology:		 Qualitative Research, Content Analysis
Keywords 
from Abstract:	� programming, computational thinking, K–12, coding, learning 

environment, Scratch, Python

 I was recently exposed to a demonstration of what pretended to be educational software 
for an introductory programming course. With its “visualizations” on the screen, it was 
such an obvious case of curriculum infantilization that its author should be cited for 
“contempt of the student body.” (Dijkstra, 1989, p. 1403)
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The above pejorative epigraph by Edsger Dijkstra, an Association of Computing 
Machinery Turing awardee, captures an interesting but fierce debate on teaching pro-
gramming and computing (Denning, 1989). It would have been thought-provoking 
to revisit Dijkstra’s position in the current landscape of computing education: Either 
Dijkstra’s warnings were not heeded, or he underestimated his argument about “radi-
cal novelty” (Dijkstra, 1989, p. 1398), which arguably has made programming relat-
able to younger children. By radical novelty, Dijkstra contended that the enormous 
computing power of the computers in the era represented a massive leap that cannot 
be explained or understood by the conventional mindset, where gradual and seemly 
imperceptible changes are the prevailing educational practices. Although Dijkstra’s 
(1989) target seemed to be undergraduates, his dissatisfaction with certain pedagogi-
cal practices was obvious when he suggested imposing fines for use of anthropomor-
phic terms such as “bug” as substitute for “error” in programming classes, a rationale 
that contrasts with our present reality. For instance, present arguments postulate that 
the anthropomorphic characteristics of the programming environment, such as block-
based and drag-and-drop features, create a low learning barrier and a high ceiling for 
programming achievement (Repenning et al., 2010; Resnick et al., 2009).

Since Dijkstra made this comment, programming has moved from an expert 
and domain-specific literacy to an interdisciplinary skill deemed useful for cross-
domain applications. Although the extent of coverage and quality of programming 
skills demonstrated at different learning levels may be contentious, the benefits of 
learning programming across grade levels are abundant, including in early child-
hood (Bers et al., 2014; Kanaki & Kalogiannakis, 2018; Sullivan & Bers, 2019). 
These benefits include improvements in mathematical thinking, creativity, meta-
cognition, confidence, language literacy, collaboration, and host of other 21st-cen-
tury skills (Denner et al., 2019; Popat & Starkey, 2019; Scherer et al., 2019).

Attempts to teach programming in K–12 date back to the 20th century. Notably, 
Seymour Papert’s seminal work on Logo programming, procedural thinking, and 
constructionism promoted a vision of children teaching computers to think 
through programming (Papert, 1980). Fast forward to the early 21st century; Wing 
(2006) called on computer science educators to extend the treasures of computing 
by teaching everyone “ways to think like a computer scientist” (p. 35), also 
referred to as computational thinking. Although computational thinking was 
explicitly and conceptually differentiated from programming in Wing’s (2006) 
seminal call, the association between them remains strong. Most researchers have 
viewed programming activities as the underlying practice in learning computa-
tional thinking (Ezeamuzie & Leung, 2022). Furthermore, the socio-digital trans-
formations that influence the ways we live, study, and work in the 21st century 
hinge on computer programs and reasonably require children to be conversant 
with their operation literacy.

The lucidly supported need for programming education in K–12 and the con-
comitant awareness in schools evoke concerns about how to support programming 
literacy effectively. In this regard, appropriate programming environments and ped-
agogies stand out as pillars that influence programming education. Several pedago-
gies have been highlighted in reviews (see Hsu et  al., 2018; Lye & Koh, 2014; 
Scherer et  al., 2020). Although noteworthy progress has been recorded in K–12 
programming education in the 21st century, some of the associated practices were 
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once challenged. For example, Dijkstra (1989) strongly criticized the argument that 
a lack of appropriate programming platforms was responsible for software develop-
ment challenges. Dijkstra’s criticism is consistent with Soloway’s (1986) assertion 
that the primary cog in the wheel of learning programming is the logical aspects of 
programming (e.g., decomposition, abstraction) that entail “putting the pieces 
together” (p. 850). However, several studies (e.g., Broll et al., 2018; Deng et al., 
2020; Yildiz Durak, 2020) found that features of programming environments aid 
programming ability. This trajectory raises critical questions about the features and 
affordances of the programming environments that influence learning.

Often, programming environments are described as either block-based or text-
based environments. In block-based environments, programmers drag and drop 
visual blocks of code in logical patterns. Text-based environments indicate plat-
forms that require typing of textual codes with adherence to semantics and syntacti-
cal formats. To support educators who are increasingly tasked with supporting 
learners in acquiring programming and to increase our knowledge of the nature of 
programming environments beyond the dichotomy of block-based and text-based, 
this study systematically examines the literature on K–12 programming to unearth 
features of programming environments that influenced programming education in 
the 21st century. Gaining clarity on how the features have evolved will make the 
boundaries to programming more permeable and facilitate cross-disciplinary appli-
cations of programming literacy. Furthermore, recommendations of specific pro-
gramming platforms, while contemporarily useful, fade in impact as programming 
environments evolve. Therefore, identifying the features that define environments 
rather than simply highlighting some environments as effective, avoids the problem 
posed by the transient nature of programming environments. This systematic review 
taps into the riches of prior research to inform such understanding by synthesizing 
and cross-checking the affordances of various programming environments.

Explicitly, the research question that guided this review is: Within the literature that 
evaluated the development, design, and application of programming environments in 
K–12, what dimensions informed the choice of programming environments? In this 
study, programming environment is loosely conceived as platforms, gadgets, tools, or 
applications that offer learners the capability to write program codes.

Background

In this section, we synthesize existing research by examining how program-
ming environments have been framed. These include evaluating features of spe-
cific environments, comparison of two environments, cross-analysis of multiple 
environments and extant reviews on the influence of environments.

Insights From Evaluation and Comparison of Programming Environments

Studies that evaluated the effectiveness of specific programming environments 
are insightful for understanding the underlying factors in choosing a program-
ming environment in K–12. For example, Messaging and Remote Procedure Call 
are the unique features of NetsBlox, a visual programming environment used in 
secondary schools (Broll et  al., 2018). Similarly, studies that compared pro-
gramming environments such as Yildiz Durak’s (2020) comparison of the effects 
of Scratch and Alice, are equally resourceful in choosing programming 
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environments. In Deng et al. (2020), Visual Basic and PencilCode were compared 
for their influence on learning programming. Findings from these studies sug-
gested that block-based environments eliminate syntax errors. Also, text-based 
environments support more versatility than the limited functionality of block-based 
environments. More so, PencilCode, a hybrid environment, bridged gaps between 
block-based and text-based environments by combining blocks and texts.

However, evaluations of specific environments are prone to developers’ bias. 
Also, isolated comparisons of two programming environments, while useful, do 
not explain their relationships with the growing list of programming environ-
ments. The genre of studies (i.e., empirical studies evaluating and comparing 
environments) are briefly reviewed here because they constitute suitable data for 
the present systematic review, which seeks to determine how programming envi-
ronments relate or differ from one another holistically. Therefore, studies that 
reported characteristics that facilitated or diminished the usage of specific pro-
gramming environments were analyzed in this study.

Cross-Analyses of Multiple Programming Environments

In the early 21st century, Gómez-Albarrán (2005) selected 20 widely adopted 
programming environments and categorized each as a reduced-development envi-
ronment, example-based environment, visualization/animation environment, or 
simulation environment. The reduced-development environments refer to envi-
ronments that recognized the overheads of complicated platforms and were pur-
posefully designed to mitigate the complexities by simplifying the interfaces. The 
example-based environment created extensive programming examples as scaf-
folded starting points for learners to solve new programming problems. 
Visualization/animation environments were deemed to facilitate programming by 
demonstrating the behavior of the codes visually. The simulation environment 
executes the program codes in an imaginary world. Gómez-Albarrán (2005) 
argued that reduced-development environments (e.g., BlueJ) are appropriate for 
novice programmers, whereas the other three categories of environments are pro-
visioned for in-depth programming learning. However, these claims were not 
empirically validated, and most of the studied programming environments (except 
BlueJ and Alice) are rarely used in today’s K–12 classrooms.

In a more recent study, Kraleva et al. (2019) focused on block-based program-
ming environments. They analyzed the environments in four dimensions: usabil-
ity and support, availability of learning resources, capabilities of the environment, 
and the closeness of features to a conventional programming language. They 
flagged Scratch and Code.org as the recommended environments. In another 
cross-analysis of 26 block-based environments by in-service computer science 
teachers, João et  al. (2019) designated programming environments such as 
ScratchJr, Lego Bricks, and Bee-bot as appropriate for kindergarteners, whereas 
Scratch, Tinker IDE, m-Block, and Code Monkey were adjudged to be the most 
flexible.

However, programming environments are transient. It is important to under-
stand how programming environments could be theoretically modeled. This 
understanding will inform the design or selection of environments that meet 
learners’ learning objectives.
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Lessons From Review Studies of Research Articles

The influence of programming environments was one of the concerns in a 
scoping review (Palumbo, 1990) that sought to unpack the relationship between 
programming and problem solving. Palumbo (1990) found that Logo, BASIC, 
and Pascal were the predominant languages for learning to program. Also, BASIC 
was reported as unstructured and the least effective in problem-solving. These 
environments, which were dominant in the 1990s, are highlighted here to demon-
strate how much programming platforms have changed. Languages such as 
BASIC and Pascal are rarely mentioned in K–12 and distinctly contrast the ever-
growing list of programming environments, including visual platforms.

As most visual programming environments are designed to mitigate the cogni-
tive challenges of learning programming, Kuhail et al. (2021) were interested in 
understanding the usage trends of visual programming environments when they 
analyzed 30 articles that reported activities of end-users or novice programmers 
between 2010 and 2020. They categorized visual programming platforms into 
four categories according to the implementation technique: block-based, diagram-
based, form-based, and icon-based. Through their inquiry, Kuhail et  al. (2021) 
showed that block-based and diagram-based platforms were the predominant pro-
gramming environment type. However, the underlying characteristics of the envi-
ronments in facilitating learning programming are unknown as most of the articles 
did not report on their platforms’ usability. The rarely used text-based environ-
ments (Palumbo, 1990) and a dearth of understanding concerning the underlying 
features of virtual programming environments (Kuhail et al., 2021) leaves ques-
tions regarding the suitability of environments, the rationale for choosing pro-
gramming environments, and the platforms’ adaptability to K–12.

Additional insights about programming environments were reported in the fol-
lowing tool-specific reviews. Zhang and Nouri (2019) sought to understand what 
students can learn in Scratch in their systematic review of 55 empirical studies on the 
use of Scratch in K–9 education. Results showed that Scratch supported the develop-
ment of predictive thinking and human-computer interaction. Also, learners’ devel-
opment of computational thinking concepts, practices, and perspectives as framed in 
Brennan and Resnick's (2012) three-dimensional framework was validated in 
Scratch. However, Zhang and Nouri’s (2019) systematic review did not explain how 
the features of Scratch enabled the acquisition of the above skills. Another platform-
dependent study was reported in a meta-analysis that examined the effectiveness of 
Alice software in comparison with conventional programming languages (Costa & 
Miranda, 2017). Although Alice was determined to be marginally more effective 
than other conventional programming environments, this finding was based on six 
quasi-experimental studies and confounded by this statistical limitation.

Method

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) was adopted for this study. Originally designed for systematic reviews 
and meta-analyses in medical research (Moher et  al., 2009), PRISMA offers 
invaluable standards for systematic reviews in other fields. Figure 1 summarizes 
the identification and screening procedures for eligible studies.
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Identification of Studies

Web of Science and Scopus were selected as databases because they index 
abstracts from multidisciplinary research with comprehensive coverage of high-
quality journals and proceedings. To select search terms that are broad yet capable 

Full-text articles eligible for inclusion in the qualitative synthesis.
(n = 111)

Identify records through database search. Databases = Web of Science and 
Scopus. See Table 1 for search terms. Period = 2000 – 2021.
Records retrieved (n = 168,993)Id

en
ti

fy

Abstract Screening. 
Exclude ineligible articles including reviews, higher education, and theoretical 
discourse. Records screened (n = 997), Records excluded (n = 751)
Record retained (n = 246)

Full-Text
Screening.

Pre-processing Screening

(a) Selected articles in educational, computing, and interdisciplinary journals
(b) Remove duplicates
Records screened (n = 168,993), Records excluded (n = 167,996)
Record retained (n = 997)

S
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ee
n

Full text of articles were screened to exclude those that do not meet the 
inclusion criteria and were not clearly identified by abstract screening. Records 
screened (n = 263), Records excluded (n = 152)
Record retained (n = 111)

Scour journals and track references.
Records included (n = 17)
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e

Figure 1.  Flow Diagram of Search Strategies and Screening for Eligible Studies for 
Review.
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of identifying high-quality studies, we adopted Luxton-Reilly and colleagues’ 
(2018) approach and tested various search terms iteratively. Table 1 shows the 
selected optimal phrasal keywords for the database search. Although this review 
is focused on programming in K–12, we included computational thinking as part 
of the search term because of the evidence that many computational thinking stud-
ies in K–12 engaged students in programming activities (Ezeamuzie & Leung, 
2022; Lye & Koh, 2014). The search was further restricted to English peer-
reviewed articles published between 2000 and 2021. The identification stage 
yielded 168,993 documents (Web of Science n = 96,681; Scopus n = 72,312).

Screening and Eligibility of Documents

With the initial pool of documents identified, an empirical study with K–12 
participants was selected if the article

1.	 evaluated the development or implementation of a programming environ-
ment, or

2.	 compared two or more programming environments, or
3.	 reported the effect of programming environments.

The above criteria formed the eligibility parameters for screening the docu-
ments and were implemented in three sequential stages: pre-processing, abstract 
screening, and full-text screening.

Pre-processing—using the database filters, we limited the pool to educational, 
computing, and interdisciplinary journals as learning programming was out of the 
scope of other categories. Duplicates from the independent databases were also 
excluded. The pre-processing stage resulted in the exclusion of 167,996 articles, 
leaving 997 articles for abstract screening. The reliability of pre-processing 
screening was tested by selecting 100 articles randomly from the initial pool of 
articles (n = 168,993). Based on the inclusion criteria, another member of the 
research team read the titles and abstracts of the articles, and coded to accept or 
reject the articles independently. The process resulted in 99% agreement with the 
pre-processing screening.

Abstract screening—100 articles were randomly selected from the remaining 
pool (n = 997). Two members of the research team read the 100 selected articles 
and classified them as accept or reject. Members were advised to accept an article 
when in doubt. Interrater reliability analysis showed 97% agreement between 
coders. For the three articles that were coded differently, the research team dis-
cussed the disagreement, reiterated the inclusion criteria, and reached a consen-
sus. The abstracts of the remaining articles (n = 897) were screened by the first 
author. When in doubt, the first author assigned the article to the accepted pool for 
further review by the research team and full-text screening. The research team 
met for 2 hours every week to review the outcomes of the abstract screening, 
which lasted for 4 weeks. The abstract screening resulted in the exclusion of 751 
articles, leaving 246 articles for full-text screening.

Full-text screening—Before the full-text screening of the remaining 246 arti-
cles, we scoured journals that contributed more than 5% to the pool. Also, we 
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searched for eligible articles from previous reviews and meta-analyses that inves-
tigated programming. Scherer and colleagues’ (2019) meta-analysis on the cogni-
tive gains of programming was particularly useful, pointing to 15 other valuable 
reviews. The reference backtracking and journal scouring culminated in the inclu-
sion of 17 articles, leaving 263 articles for full-text screening. Two members of 
the research team screened the full text of the remaining articles. Differences in 
coding were discussed and mutually agreed upon. The screening phase concluded 
with the exclusion of 152 documents and the retention of 111 eligible studies for 
charting.

Most of the excluded articles were reviews/meta-analyses/theoretical dis-
course (e.g., Hsu et al., 2018; Hu et al., 2020; Macrides et al., 2022; Scherer et al., 
2020), having participants from higher education (e.g., Kim et al., 2013; Wang & 
Hwang, 2017) and using teachers as study participants (e.g., Hadad et al., 2021; 
Kong et al., 2020).

Data Analysis

Prior works (e.g., Gómez-Albarrán, 2005; Kraleva et al., 2019; Kuhail et al., 
2021) revealed how programming environments may be classified or recom-
mended some specific but transient platforms. For example, Gómez-Albarrán 
(2005) categorized programming environments into the reduced-development 
environment, example-based environment, visualization/animation environment, 
or simulation environment. Scratch and Code.org were recommended in Kraleva 
and colleagues’ (2019) analysis of programming environments’ usability, avail-
ability, capabilities, and the closeness of their features to conventional language. 
However, the objective of this review is neither to create a classification nor rec-
ommend any programming environment. We aim to deconstruct the spectrum of 
features that influence the choice of programming environments from the 
researchers’ perspective. Tying back to the research objective, we stepped back to 
assimilate how the data provided perspective on the research questions through a 
two-stage process: coding and charting.

Table 1

Optimal Phrasal Keywords for Database Search

Database Phrasal Keyword

Web of Science TS = ([learn OR acquire OR develop OR teach OR assess OR 
instruct] AND "programming") OR TS = ([learn OR acquire OR 
develop OR teach OR assess OR instruct] AND "computational 
thinking")

Scopus TITLE-ABS-KEY ([learn OR acquire OR develop OR teach OR 
assess OR instruct] AND "programming") OR TITLE-ABS-KEY 
([learn OR acquire OR develop OR teach OR assess OR instruct] 
AND "computational thinking")

Note: TS and TITLE-ABS-KEY indicate that the search is limited to the Title, Abstract, and 
Keyword fields only.
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First Stage: Coding
According to Saldaña (2016), a “code” is a word or short phrase that sums or 

captures the salient attribute of a portion of data and a “category” represents a 
progressive collection of related codes. Guided by Saldaña’s (2016) qualitative 
coding framework, two members of the research team summarized the 111 eligi-
ble articles to highlight the features of interest independently. For each article, the 
abstract and two summaries were collated as a case for further analysis in NVivo, 
a qualitative data analysis software (https://www.qsrinternational.com/).

For each case in NVivo, relevant codes related to the affordance of the program-
ming environments were extracted. As coding progressed, related codes were 
mapped into categories iteratively. While the coding exercise was conveyed in an 
ordered and orderly manner, it entailed several iterations of reading and backtrack-
ing as needs arose for adding, deleting, and clarifying code definition. For exam-
ple, Magerko et al. (2016) is a Nvivo case that described the rationale and evaluation 
of EarSketch, an environment that combined programming and music production. 
In the first round of coding, music production emerged as one of the codes from the 
case. Also, Rodríguez-Martínez et al. (2020) were interested in how Scratch sup-
ported learning mathematics in grade six. We added mathematics as another code. 
With the coding of other Nvivo cases yielding codes such as the gameplay in 
Autothinking (Hooshyar et al., 2021), further relationship analysis, using NVivo, 
showed that type of projects supported in an environment (codes: music, mathe-
matics, gameplay) influenced researchers’ choices and design of programming 
environments. Hence, project type was identified as a category. The coding stage 
culminated in the identification of eight major categories/thematic dimensions of 
programming environments.

Second Stage: Charting
Charting involved reading the 111 articles (please see online supplementary 

material) and categorizing their data across eight thematic dimensions. This stage 
was convened to gain insight into how the selected studies have implemented the 
dimensions identified from the first stage (coding). Two researchers read and 
charted the articles independently. The research team met for 2 hours every week 
to discuss the outcomes of the charting, and mutually resolved any variation. The 
charting lasted for 6 weeks.

Findings and Discussion

Profile of Charted Studies

Table 2 shows the eight categories/thematic dimensions, sample codes, and 
sample data that support the codes.

••  � Connectivity Mode – reflects whether a programming environment 
requires Internet connections or not.

••  � Interface Natural Language – relates to how the linguistic design of 
environments supports learners in their locale or native local language.

••  � Language Inheritance – denotes whether learners need to master the syn-
tax and semantics of a new programming language in an environment or 

https://www.qsrinternational.com/
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not. Whether an environment was charted as conventional or derived 
depends on how the authors described the underpinning programming 
language of the environment. The traditional programming languages 
(e.g., Python, Java, JavaScript) are generally regarded as conventional. 
When the programming language of an environment is an extension of an 
existing language, it was charted as derived. For example, CodeCombat 
(Kroustalli & Xinogalos, 2021) was charted as derived because students 
wrote codes in Python—a conventional language.

••  � Age and Grade Appropriateness – shows the relationship between learn-
ers’ developmental stage and the suitability of the programming envi-
ronments. The programming environments were classified into five 
categories based on the recommended users’ age: (a) kindergarten (less 
than 6 years of age), (b) lower elementary (6–9 years), (c) upper elemen-
tary (9–12 years), middle school (12–15 years), and high school (15–18 
years).

••  � Cost of Environment – identifies the cost involved in using a program-
ming environment, whether it requires a paid subscription or a free 
platform.

••  � Input Interface – describes approaches for keying in codes in a program-
ming environment. Besides the block-based and text-based code entry, 
other formats reported in the literature include icon-based, hybrid, and 
tangible input interfaces. Icon-based environments are special type of 
block-based environment where pictorial symbols are used as com-
mands (Kuhail et  al., 2021). Hybrid environments provide both text-
based and block-based coding input interfaces. Tangible environments 
represent a special approach to keying in codes with physical blocks; 
without using the computer mouse, keyboard, and screen.

••  � Output Interface – describes how program codes are rendered. Often, 
vocabularies such as block-based, drag-and-drop, visual and text-based 
refer to environments without distinguishing the nature of input (keying 
in codes) and output (rendering the codes). For example, in analyzing 
the learning outcomes and attitudes of primary school students in a 
visual environment, Sáez-López et  al. (2016) described Scratch as a 
visual environment. Although the execution of the Scratch program ren-
ders as a visual output of a game and interactive agents, differentiating 
between the approach for keying in codes (input) and the forms of ren-
dering the codes (output), emerged as an important dimension for 
describing programming environments. The formats of rendering output 
in programming environments include visual, 3D, deployable, audio, 
hardware control, virtual reality, and text.

••  � Project Type – provides insight into how diverse programming environ-
ments are provisioned to support different types of learning activities. 
Although not exhaustive, common types of projects include animation, 
digital stories, game design, gameplay, music composition, simulation, 
mathematics, mobile apps, and standard apps.
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Table 3 summarizes the profile of the programming environments from the 
eligible studies (n = 111) in eight dimensions. These attributes and how they 
influence programming are examined in this section.

Missing data is an important attribute of the charted data in Table 3. As the 
name implies, it represents the number of studies from which the value of each 
dimension could not be extracted. This ranged from 24% of input interface (n = 
27) to 93% of interface natural language (n = 103). The considerable proportion 
of dimensions that could not be determined is understandable, as the values in 
popular environments were often implied in the articles, but charting was strictly 
based on the data extracted from articles. For example, in an investigation of how 
the nature of a task influences programming, Erümit (2020) did not specify fea-
tures of Scratch, such as whether it was provisioned to work online or offline. 
Although we knew that Scratch has both offline and online modes, the connectiv-
ity dimension of the article was coded as missing data as the author did not specify 
this feature. The same approach was adopted in coding the other dimensions. 
Other alternative explanations exist for the missing data. For instance, it might 
reflect dimensions of a programming environment that researchers have focused 
on or ignored. Also, brevity, journals’ word count restrictions, and other commu-
nication purposes might have hindered authors from reporting certain details. The 
input and output interface attracted the most attention from prior work, and the 
interface natural language, grade level/age appropriateness, and programming 
language inheritance received the least attention.

Figure 2 is a simple word cloud visualization of the programming environ-
ments presented in the charted articles. The font size of a word is directly propor-
tional to the observed frequency of the word. Scratch, Lego, Python, Kibo, and 
Alice are the most popular programming environments within the eligible studies. 
Note that the objective of this study was neither to compare environments nor to 
elevate certain environments as ideal platforms. As highlighted in the following 
thematic discussion, an ideal platform does not exist without context. Rather, the 
focus of this review was to synthesize the nature of programming environments as 
reported in peer-reviewed articles that embodied researchers’ perspectives. The 
highlighted models will assist in making informed decisions about programming 
environments.

Connectivity

About 77% of the charted articles (n = 86) did not specify the connectivity 
mode of the discussed environment. We pondered whether researchers had per-
ceived connectivity features as implied or the likelihood that a substantial number 
of the eligible studies might have been conducted in regions with good penetra-
tion of high-speed and affordable Internet connections, which invariably may 
have diminished concern for connectivity. Since the geographical distribution of 
the studies was not captured in the chart, no conclusive inference could be drawn. 
Moreover, mapping the regions by levels of internet access may be an oversimpli-
fication of connectivity issues. For instance, Katz et  al. (2017) found that the 
quality of internet connection remains a serious issue in the United States. 
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Although the United States may stand in the league of technology advanced 
regions, in a national telephone survey of parents of school-aged children that 
reported less than the national median household income, 52% of participants 
described their internet connection as too slow for practical use (Katz et al., 2017). 
Apart from the studies that did not provide any information about connectivity 
mode, most of the studies that identified connectivity types did not highlight them 
as a feature of concern—whether as a promoter or inhibitor of learning program-
ming. Four studies explicitly identified the programming environments adopted 
as both online and offline: Scratch (Erol and Çırak, 2022; Maloney et al., 2010), 
IRobotQ3D (Zhong et al., 2023), and mBlock (Matere et al., 2023).

Although the paucity of studies that highlighted connectivity seems to dimin-
ish the concern, using offline environments impedes programming in some cases. 
In regions without Internet service or in which such a service is costly, students 
are often confronted with additional challenges, such as instability in download-
ing or updating the programming environment, demanding configuration of the 
environment, and limited computing power/resources of some personal comput-
ers in solving computationally intensive tasks. Ezeamuzie (2023) highlighted 
some of the challenges of internet connection in an exploratory intervention in a 

Figure 2.  Word Cloud Representation of Programming Environments From Eligible 
Articles.
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technology-deprived school. The choice of Python IDLE, an offline programming 
environment for middle school learners in Ezeamuzie (2023), was primarily a 
result of the connectivity constraint. However, these challenges could be miti-
gated in some online programming environments such as Google Colaboratoy—a 
browser-hosted Jupyter notebook service that requires no configuration, provides 
access to free cloud computing resources, and makes sharing of projects easy 
(Google, n.d.). How programming environments can enable social interaction in 
remote places with limited Internet connections remains unclear. In the lens of 
Spector’s (2005) educratic oath, which encapsulates educators’ obligation to 
design learning in ways that neither impair learning nor discriminate against 
learners, future research needs to investigate the impacts as well as formulate 
solutions for learning programming amongst learners with limited internet 
connectivity.

Interface Natural Language

A large proportion of the charted articles (n = 103; 93%) did not specify the 
natural language nor the number of languages supported in their programming 
environment. Considering that only English publications were reviewed, a plau-
sible inference is that majority of the studied environments support, at minimum, 
learners who can read and write in English. Furthermore, conventional program-
ming languages (e.g., Java, Python, JavaScript) are English dominated.

The importance of learners’ first or native language for K–12 learners’ pro-
gramming ability cannot be over-emphasized. For example, Lau and Yuen (2011) 
found that Chinese students who were taught programming in their native lan-
guage outperformed their peers who received instruction in English. The natural 
language was influential in the design of Alcody, an emotional-learning support 
system for programming in Spanish (Morales-Urrutia et al., 2021) and Let’s Code 
in Arabic (Almanie et al., 2019).

Although English assumes a central role in programming, educators may find 
that for students, especially in kindergarten and elementary school, situating a pro-
gramming environment in a localized and relatable linguistic context may facilitate 
their learning. A preferable alternative is designing environments with multilingual 
support. For example, CodeCombat and Scratch support over 50 languages 
(Kroustalli & Xinogalos, 2021) and 70 languages (Erol & Çırak, 2022), respec-
tively. Environments that support multiple languages (e.g., Scratch), especially free 
platforms, promote both wide and cross-cultural applications of the environment.

Using learners’ native language as the natural language in a programming 
environment seems promising as learners can focus on the intricacies of program-
ming without linguistic barriers. While the influence of the interface natural lan-
guage seems to be overlooked in charted studies, future studies can add to the 
knowledge of K–12 programming by investigating the effect of programming in 
various localizeed languages.

Programming Language Inheritance

Environments in the conventional category (n = 12; 11%) include Python 
(e.g., Efecan et  al., 2021; Sentance et  al., 2019), Java (Weintrop & Wilensky, 
2017, 2019), ActionScript (Navarrete, 2013), C (Sun & Hsu, 2019), and Visual 
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Basic (Deng et al., 2020). Amongst the conventional category, Python was most 
dominant, appearing in seven studies. The conventional languages (e.g., Python, 
Java, or C) offer cross-platform reusability. For example, students programmed 
with Python in CodeCombat (Kroustalli & Xinogalos, 2021) and Java in Greenfoot 
(Kölling, 2016). Although conventional languages offer the flexibility of reuse in 
other environments, studies in the charted pool focused on the language per se, 
without emphasizing the environment. In the lens of cognitive load theory, the 
way information is presented on an interface constitutes the extraneous load 
(Sweller et al., 1998). Therefore, educators need to pay attention to the effect of 
the interfaces that support conventional languages, which may influence learning 
too.

Most of the programming environments (n = 93; 84%) did not identify any 
underpinning conventional programming language. In the absence of this infor-
mation, one possible interpretation is that such environments require students to 
learn their syntax and semantics. On the contrary, and understandably, categoriz-
ing some environments as implementing distinct programming languages may be 
contentious. For example, block-based environments such as Scratch, App 
Inventor, and Webduino (Wu & Chen, 2022) are derived from the Google Blockly 
JavaScript Library (Blockly, n.d.). In any case, even when the environments 
derived their underpinning programming language from Blockly, they are inde-
pendently and distinctly provisioned in their respective environments. Implicitly, 
they have different semantics from Blockly and may not be regarded as the same 
language.

For developers of programming environments, it is important to consider the 
aspect of programming language reusability. MaLT2, a 3D game design platform 
for creating dynamic objects, inherited Logo (Grizioti & Kynigos, 2021). Java is 
the underlying language in Greenfoot and BlueJ (Kölling, 2016). CodeCombat 
(Kroustalli & Xinogalos, 2021) inherited Python and JavaScript too. OpenSim 
with S4SL, a block-based environment, inherited Scratch (Pellas & Vosinakis, 
2018). In the derived programming environments (n = 15, 14%), the syntax and 
semantics of the programming language of the environment are the same as those 
of the parent language. Hence, learners can migrate to other environments, espe-
cially when some environments support limited functionality.

Age and Grade Appropriateness

The awareness that learners’ needs differ according to age necessitated the 
development of ScratchJr, a minified implementation of Scratch, to permit 
younger children to learn programming in developmentally appropriate ways 
(Flannery et al., 2013; Strawhacker et al., 2018). Other developmentally appropri-
ate environments have embedded core principles in designing learning in early 
childhood education, including minimal screen exposure, tangible components, 
and extendibility to other crafts (Bers et  al., 2013). Examples include KIWI 
(Sullivan & Bers, 2016), Bee-bot (Angeli & Valanides, 2019), and Kibo (Relkin 
et al., 2021; Sullivan & Bers, 2019), which are provisioned as tangible and screen-
free platforms for kids.

Sullivan and Bers (2019) recommended Kibo for children between 4 and 7 
years. Using Kibo, Relkin et  al. (2021) found that Grades 1 and 2 students 
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(between 5 and 9 years old) developed sense of algorithm, modularity, and pattern 
representation. Although the age of participants in Relkin et al. (2021) did not dif-
fer significantly from Sullivan and Bersʼs (2019) recommendation for KIBO, 
learning may be impaired when much older learners use the environment. 
Developmentally appropriate environments are not restricted to finding suitable 
environments for kindergarteners and elementary school children only. It also 
demands ensuring that the choice of environments does not limit learning too. 
Limited vocabulary in some environments may hinder effective learning for older 
children. For instance, PhysGramming was designed with the theme of “object is 
everywhere” to teach object-oriented programming to children aged between 4 
and 8 years (Kanaki & Kalogiannakis, 2018). Learning object-oriented program-
ming is non-trivial even for expert programmers, and the notion that it could be 
taught in early childhood and lower elementary is interesting. However, close 
observation of the activities involved in teaching younger cohorts shows that 
PhysGramming teaches object-oriented programming through games of solving 
puzzles, matching objects, and grouping objects. The activities differ from object-
oriented programming in conventional languages like Java, where learners deal 
with concepts such as inheritance, polymorphism, and encapsulation. Examining 
whether PhysGramming activities are representative of object-oriented program-
ming is outside the scope of this study. However, the central point is that although 
PhysGramming may be a suitable environment for the designers’ recommended 
age (i.e., between 4 and 8 years), repurposing the environment for older children 
may limit learning.

Most of the studies (n = 95; 86%) did not provide information about the age-
appropriateness of the programming environments they examined. Except for 
Strawhacker and Bers’s (2015) comparison of the influence of interface style (tan-
gible, block-based, and hybrid) in learning programming among kindergarteners, 
the few studies that highlighted the age-appropriateness of their programming 
environments focused on the features of their specific environment only. 
Strawhacker and Bers (2015) found inconclusive evidence of any association 
between the nature of the interface and students’ understanding of programming 
concepts. Future studies should consider comparing environments for their suit-
ability to learners of different ages and levels in terms of both developmental 
appropriateness and limiting learning opportunities.

Cost of Environment

Only 12% of the articles (n = 13) identified their environments as free. 
Examples include LightBot (Yallihep & Kutlu, 2020), Scratch (Erol & Çırak, 
2022; Iskrenovic-Momcilovic, 2019; Sáez-López et  al., 2016), ScratchJr 
(Strawhacker et al., 2018), mBlock (Matere et al., 2023), and Blockly (Unal & 
Topu, 2021). Articles that were classified as paid environments (n = 33; 30%) 
represented studies that adopted hardware and robotic gadgets. Many of the 
reviewed articles (n = 76; 68%) did not disclose whether the programming envi-
ronments were free or not. Probably, articles that adopted paid environments did 
not disclose the associated cost, which may be a less interesting feature. On the 
other hand, given that a free environment is a feature most studies would 
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highlight, the absence of such information in some articles may be attributed to 
the notion that their free usage is implied (e.g., Scratch).

The cost of programming environments may appear trivial. However, it 
becomes a significant dimension when inclusivity is the valued educational goal 
(Spector, 2005). In the early 21st century, when computers were considered a 
shared family gadget, the Raspberry Pi Foundation (n.d.) designed low-cost com-
puters to increase young children’s exposure to computing through personal own-
ership. Kölling (2016) narrated their efforts to complement Raspberry Pi’s 
mission, describing the failure and subsequent success in porting Java-based 
Greenfoot and BlueJ into Raspberry Pi’s standard distribution. From the reviewed 
articles, there is a substantial number of studies that adopted tangible gadgets or 
robots (n = 33; 30%). These hardware and robots come at a cost. Therefore, it is 
necessary to understand how the cost of programming environments may influ-
ence inclusivity in learning.

Although what constitutes affordable programming environments is subjective, 
among the studies that provided data on the cost of tangible gadgets, Arduino-based 
environments ranked the most affordable. In a study that compared the influence of 
solo and pair learning on students’ robotic troubleshooting ability, Zhong and Li 
(2020) noted that Arduino was the least expensive from their analysis of robotic 
platforms. A similar claim was made to justify choosing Arduino for a primary-
school, design-based learning experiment (Matere et al., 2023). Another Arduino-
based environment is Phogo (Molins-Ruano et al., 2018), a reimplementation of the 
successful Logo programming from a virtual turtle to the physical Tortoise robot 
that combines Python, an Arduino-like robot, and 3D printing at a low cost (US$80). 
Besides, Arduino, Serrano Pérez and Juárez López (2019) reported other affordable 
tangible gadgets in their analysis of educational tools, including a (US$25) ultra-
low-cost robot. However, Arduino has the unique advantage of a free and open-
source programming environment. Environments that build on the open-source 
ecosystem promote the development of affordable hardware, sensors, and robots 
that are interoperable (Zhong & Li, 2020).

Input Interface

Tangible environments (n = 13, 12%) support younger children and students 
with special needs to program without typing on the computer keyboard. 
According to Taylor (2018), the color-annotated Dash robot was chosen for early 
primary school programming because concrete manipulatives help young learners 
and students with special needs to learn more effectively. Using Kibo, young chil-
dren (Relkin et  al., 2021; Sullivan & Bers, 2019) and people with Down syn-
drome (González-González et al., 2019) were able to snap tangible blocks together 
to form programming instruction. When kids’ exposure to screens is a concern, 
tangible environments mitigate the concern (Bers et al., 2014; Relkin et al., 2021; 
Sullivan & Bers, 2019).

Other examples of tangible environments include Torino for visually impaired 
children (Morrison et al., 2021) and Talkoo Kit (Katterfeldt et al., 2018). With 
Talkoo Kit, the programming process is inverted by de-emphasizing the use of 
computers and promoting collaborative design of physical circuitry that is 
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synchronously mapped to real-time virtual interaction. One major limitation of 
tangible blocks is that learners are restricted by the finite set of physical blocks. 
For this limitation, a workable solution in the literature was demonstrated in the 
design of Creative Hybrid Environment for Robotics Programming (CHERP). 
CHERP compensates for the limited number of physical blocks by creating a 
hybrid of block-based and tangible environments (Bers et al., 2014).

Icon-based environments (n = 5, 5%) are appropriate when the target users 
have limited reading/writing ability (Pasternak et  al., 2017). Autothinking 
(Hooshyar et  al., 2021), Microsoft Kodu (Fokides, 2017), EmpiricaControl 
(Lavonen et al., 2003) and Bomberbot (Fanchamps et al., 2021) were charted in 
the icon-based category. For example, in Bomberbot, learners programmatically 
control virtual robots through interlocking pictorial commands (e.g., forward, 
jump, repeat, if/then). Although the use of pictures as programming commands 
may be fascinating for younger children (e.g., kindergarteners), the meaning of 
pictorial commands may be difficult to interpret (Pasternak et al., 2017). Implicitly, 
icon-based environments have limited functionality and increasing the number of 
pictorial commands may not scale. Except for EmpiricaControl, the limited func-
tionality constrained the icon-based environments to gameplay activities 
(Fanchamps et al., 2021; Fokides, 2017; Hooshyar et al., 2021).

Block-based environments (n = 45; 41%) were twice the number of studies 
that adopted text-based programming environments (n = 22; 20%). This substan-
tial difference is consistent with the perception of block-based environments as 
easy programming environments. For instance, Okita (2014) compared the influ-
ence of using Lego NXT-G (block-based) or RobotC (text-based) as an introduc-
tory programming environment. In Lego NXT-G, “icon of a standing robot with 
an appended 5sec” represents a command for the robot to wait for 5 seconds. An 
equivalent command in RobotC is “wait1Msec(5000).” According to Okita 
(2014), Lego NXT-G has high transparency and supported students in creating 
mental connections between the Lego NXT-G blocks and the robot’s behavior 
easily. Similarly, most of the articles that compared programming environments, 
as illustrated above, are consistent with the anecdotal belief that text-based envi-
ronments impose higher cognitive overheads for learners than block-based 
environments.

Hybrid environments include Learn Block (Bachiller-Burgos et al., 2020), 
Java Bridge Tool (Tóth & Lovászová, 2021), Flip (Howland & Good, 2015), 
and Pencil Code (Weintrop & Wilensky, 2017, 2019). Java Bridge Tool medi-
ates transfer from App Inventor (block-based environment) to Java (text-based 
language) by creating a direct mapping in the same window, which extends 
the functionality of apps by linking App Inventor to full Java libraries. Flip 
supports the dual input modes and, interestingly, generates the natural lan-
guage translation of the program as a third language synchronously. According 
to Howland and Good (2015), the humanistic factor of the natural language 
made Flip an effective programming environment. Generally, by combining 
the two input modes, hybrid environments attempt to mitigate the limited 
functionality of block-based environments without sacrificing their transpar-
ency and ease of use.



21

Output Interface

Excluding studies that did not identify the form of output interface (n = 42; 
38%), a significant portion of the articles (n = 37; 33%) adopted programming 
environments that rendered outputs in the form of visuals, through activities such 
as games and interactive stories. Scratch (Gao & Hew, 2022), Autothinking 
(Hooshyar et  al., 2021), CodeCombat (Kroustalli & Xinogalos, 2021), and 
Bomberbot (Fanchamps et al., 2021) provide but a few examples of visual render-
ing. In Bomberbot, when the visual operation of the programmable robot is differ-
ent from the constructed codes, the environment provides tailored feedback 
quickly.

3D output interface is a special form of visual rendering. Unlike visual render-
ing in two-dimensional space, 3D enhances visualization by creating naturalistic 
engagement. According to Félix et al. (2020), the essence of 3D output lies in 
creating an immersive experience for both the game design and the gameplay. 
Microsoft Kodu, a 3D game-creation environment with cartoonish objects and 
characters, was designed to promote engagement (Fokides, 2017). Other forms of 
3D engagement include the gamification and emotion-recognition add-on fea-
tures in EasyLogic3D (Félix et al., 2020). High school students who used OpenSim 
with S4SL, a 3D visual platform, significantly improved their problem-solving 
and algorithmic design in comparison with peers who programmed in Scratch, a 
two-dimensional visual environment (Pellas & Vosinakis, 2018).

Text output interface renders the results of the programs as strings on the con-
sole (sometimes referred to as shell or terminal). Programming environments with 
outputs in this category often have commands for accepting and displaying the 
textual output and are predominantly conventional programming languages. For 
example, Java’s textual output was harnessed in comparing the influence of block-
based and text-based languages (Weintrop & Wilensky, 2017) and transitioning 
from block-based to text-based programming (Weintrop & Wilensky, 2019). 
Nonetheless, most conventional languages, such as Java and Python, also have 
libraries for creating rich graphical and visual outputs.

Hardware control requires physical/tangible objects including robots, toys, or 
electronic boards to enact their program. Examples include Arduino (Zhong & Li, 
2020), Phogo (Molins-Ruano et al., 2018), and Lego (Okita, 2014). Audio and 
virtual reality output interfaces, although less popular, are insightful approaches 
to performing the codes in a computer program. For instance, Torino, a tangible 
and tactile-enabled block that outputs sound, was a suitable output interface for 
learners with mixed visual abilities (Morrison et al., 2021). With VR-OCKS, for 
example, students are immersed in a virtual, 3D environment and program by 
organizing floating action blocks as code to solve puzzles (Segura et al., 2020).

Deployable programming environments create distributable packages that can 
be deployed on other platforms. Although this overlaps with other output formats, 
such as visuals and 3D, the ability to deploy programs across platforms serves as 
extra motivation for learners. For example, Seralidou and Douligeris (2019) found 
that students accepted App Inventor, a block-based input programming environ-
ment for designing android apps, which can be deployed to reach wider audience on 
mobile phones and tablets seamlessly. Most conventional languages offer similar 
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support. Since deployable environments support learners to design programs that 
engender social interactions and are commercializable, future research may investi-
gate whether such motivation could influence both learning and disposition toward 
programming.

Programming Project Type

Game design environments (n = 15, 14%) provide platforms for learners to 
both create and play games. This category is aptly captured in Weintrop and 
Wilensky’s (2014) description of RoboBuilder and similar environments as “pro-
gram-to-play” platforms. Other environments that support game design activities 
include Scratch (Maloney et  al., 2010), Microsoft Kodu (Fokides, 2017), 
AgentSheets and AgentCubes (Leonard et al., 2016), Alice (Hartl et al., 2015), 
and NetsBlox (Broll et al., 2018). These environments are designed to support 
parallel execution of codes to create synchronous effects of the game elements. In 
NetsBlox, parallelism is implemented across distributed computers.

Gameplay environments (n = 10, 9%) support students to code solutions for 
predetermined problems in the form of playing games. Studies showed that stu-
dents’ programming achievement (Yallihep & Kutlu, 2020) and learning attitude 
(Hooshyar et  al., 2021) improved in gameplay environments. However, game-
play environments such as CodeCombat (Kroustalli & Xinogalos, 2021), LightBot 
(Yallihep & Kutlu, 2020), and Autothinking (Hooshyar et al., 2021) do not offer 
the flexibility of game creation. Plausible impacts of this limitation may include 
boredom when successive game levels are repetitive, less motivation when access 
to higher levels is hard, and limited exposure to advanced programming concepts. 
Therefore, more research is needed to understand the impact of gameplay envi-
ronment as an introductory programming environment, as well as the long-term 
impact on programming.

Animation and digital story creation represent other genres of projects that 
may be well fitted in certain environments, such as Scratch (Maloney et al., 2010) 
and Alice (Denner et al., 2014). The meaning of animation varies both within and 
between environments. In Scratch, it ranges from simple codes that render ani-
mated effects of a sequence of images and extends to complex codes that tell 
stories, simulate science projects, and create tutorials (Maloney et  al., 2010). 
Animation and simulations are sometimes used interchangeably to describe the 
nature of activities that are supported in programming environments. In this 
review, simulation refers to activities that use tangible objects such as Dash 
robotic path tracing by students with intellectual disabilities (Taylor, 2018), and 
controlling LEDs, sensors, and buttons with Arduino (Zhong & Li, 2020).

Music composition and Mathematical representation are other types of proj-
ects that programming environments may specifically support. For instance, 
Taylor and Baek (2019) selected the Lego Mindstorms EV3 for its affordance in 
creating musical notes and tones. EarSketch was designed for computational 
music remixing with Python (Magerko et al., 2016). In Mathematical representa-
tion of word problems, Rodríguez-Martínez et al. (2020) explored the effect of 
learning to represent the least common multiple (LCM) and greatest common 
divisor (GCD) as part of word problems in Scratch. More studies are needed to 
demonstrate how features of programming environments augment learning of dis-
ciplinary topics across sciences and arts.
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Since environments may support different types of programming activities 
(e.g., game design, animation, modeling scientific concepts), the affordance of an 
environment should be clear and aligned with the programming tasks. For exam-
ple, Erümit (2020) investigated students’ programming experience in Scratch 
when engaged in three different activities: game design, arithmetic, and animation 
creation. Findings suggest that game design activities expose students to richer 
experiences than arithmetic and animation. This shows that the intrinsic nature of 
programming tasks may engender different experiences in an environment.

Sometimes, the nature of tasks that are supported in some environments may 
not be well-defined. For instance, Seralidou and Douligeris (2019) described App 
Inventor as a platform for building apps for smartphones and tablets. However, 
what constitutes an app may be unclear and hides certain affordances of the plat-
form, including support for designing games, animation, interactive user inter-
faces, and databases. Also, mapping environments to certain activities may not 
reveal the complexities of projects. Maloney et al. (2010) described Scratch as a 
platform for creating interactive and media-rich projects, encompassing activities 
such as games, simulations, science projects, animated stories, and music/video 
projects. However, the creation of music in Scratch involves playing a recorded 
sound. This approach differs from that of environments such as EarSketch, in 
which music composition is implemented through computational remixing 
(Magerko et al., 2016).

Limitations and Future Research

Although the significant role played by programming environments in learning 
has been established, the paucity of understanding about their conceptual framing 
is clear in the literature. To make programming education more permeable to the 
growing number of educators who are tasked with teaching programming in 
K–12, this study systematically synthesized the features of programming environ-
ments from existing studies, reported practices related to eight dimensions that 
could influence the choice of learning platforms, and highlighted clear gaps and 
inconsistencies that should be addressed by future authors.

To describe the contributions of this study to knowledge and practices, it is 
important to acknowledge its limitations. First, with the systematic approach of 
this review, which involved a keyword search and referential backtracking, it is not 
possible to claim total coverage. In addition, some eligible documents might have 
been omitted in the screening process, especially in the abstract screening by a 
coder. Focusing on K–12 studies inevitably excluded studies in higher education. 
Although the decision to impose this limitation was guided by the goal of under-
standing the unique context of the K–12 experience, insightful studies about pro-
gramming environments in higher education may have been omitted. Moreover, 
analyzing only peer-reviewed articles—although it was deemed necessary to miti-
gate the varied quality of grey literature—excluded some insightful pieces.

Despite these limitations, this study unearths a valuable framework that concep-
tualizes programming environments in K–12 and how the dimensions of such 
environments may influence learning. The dimensions explored in this study relate 
to the environments’ connectivity mode, the natural language of the interface, lan-
guage inheritance, age/grade level appropriateness, influence of cost and subscrip-
tion, output interface, input interface, and compatibility with various project types.
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Given the possible bias that researchers’ theoretical perspectives may induce, it 
is important to highlight key issues of validity. Certain specific programming envi-
ronments were described as illustrations of the dimensions uncovered to make 
these features more relatable to readers. The authors of this article have no affilia-
tion with any of the developers and have no intention of promoting any specific 
platform. Future work could verify the alignment between dimensions that emerged 
from the data and the actual programming environments, and examine how the 
choice of environments based on the dimensions could affect students’ program-
ming learning experience. Developers of programming environments need to elab-
orate on how the environment can support learning in these dimensions. More so, 
empirical investigations are required to verify how the design choices of program-
ming environments support the dimensions, such as age-appropriateness.

The aim of this investigation was neither to compare nor evaluate the relative 
merits of specific environments. Although this study does provide dimensions to 
be used by educators in comparing the affordances of programming environ-
ments, its main goal was to raise awareness of the need for educators to carefully 
consider how a given programming environment aligns with their students’ learn-
ing. This may lead to a sort of “chicken and egg” problem of choosing where to 
start between teaching objectives and programming platforms. Basing a decision 
on the learning objectives is a valid path from a learning and instructional design 
perspective. However, educators must be prepared to acknowledge instances 
where realizing the learning objectives within a suitable environment may be 
overly complex for the target users, causing more problems than it solves.
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