
Review of Educational Research
Month 202X, Vol. XX, No. X, pp. 1–31

DOI:https://doi.org/10.3102/00346543231216958
Article reuse guidelines: sagepub.com/journals-permissions

© 2024 AERA. https://journals.sagepub.com/home/rer

1

Multidimensional Framing of Environments
Beyond Blocks and Texts in K–12 Programming

Ndudi Okechukwu Ezeamuzie 
University of Hong Kong

Mercy Noyenim Ezeamuzie
International Christian School, Hong Kong

Computer programming provides a framework for interdisciplinary learning in
sciences, arts and languages. However, increasing integration of programming
in K–12 shows that the block-based and text-based dichotomy of programming
environments does not reflect the spectrum of their affordance. Hence, educa-
tors are confronted with a fundamental hurdle of matching programming envi-
ronments with learners’ cognitive abilities and learning objectives. This study
addresses this challenge by analyzing 111 articles evaluating the affordances of
programming environments to identify both structural and theoretical models to
support educators’ choice of programming environments. The following dimen-
sions of programming environments were identified: connectivity mode, inter-
face natural language, language inheritance, age appropriateness, cost of
environment, output interface, input interface, and project types. For each of
these dimensions, the synthesis of the literature ranged from examining its
nature and effect on learning programming to the implications of choosing an
environment and the critical gaps that future studies should address. The find-
ings offer instructors useful parameters to compare and assess programming
environments’ suitability and alignment with learning objectives.

Keywords From ScholarOne

Substantive:		� Computers and Learning, Engineering Education, Instructional
Technologies, Interdisciplinary Teaching and Research,
Learning Environments, Technology

Methodology:		 Qualitative Research, Content Analysis
Keywords
from Abstract:	� programming, computational thinking, K–12, coding, learning

environment, Scratch, Python

 I was recently exposed to a demonstration of what pretended to be educational software
for an introductory programming course. With its “visualizations” on the screen, it was
such an obvious case of curriculum infantilization that its author should be cited for
“contempt of the student body.” (Dijkstra, 1989, p. 1403)

1216958 RERXXX10.3102/00346543231216958Ezeamuzie and EzeamuzieShort Title
research-article2024

https://us.sagepub.com/en-us/journals-permissions
http://crossmark.crossref.org/dialog/?doi=10.3102%2F00346543231216958&domain=pdf&date_stamp=2024-01-03

Beyond Blocks and Texts in Programming

2

The above pejorative epigraph by Edsger Dijkstra, an Association of Computing
Machinery Turing awardee, captures an interesting but fierce debate on teaching pro-
gramming and computing (Denning, 1989). It would have been thought-provoking
to revisit Dijkstra’s position in the current landscape of computing education: Either
Dijkstra’s warnings were not heeded, or he underestimated his argument about “radi-
cal novelty” (Dijkstra, 1989, p. 1398), which arguably has made programming relat-
able to younger children. By radical novelty, Dijkstra contended that the enormous
computing power of the computers in the era represented a massive leap that cannot
be explained or understood by the conventional mindset, where gradual and seemly
imperceptible changes are the prevailing educational practices. Although Dijkstra’s
(1989) target seemed to be undergraduates, his dissatisfaction with certain pedagogi-
cal practices was obvious when he suggested imposing fines for use of anthropomor-
phic terms such as “bug” as substitute for “error” in programming classes, a rationale
that contrasts with our present reality. For instance, present arguments postulate that
the anthropomorphic characteristics of the programming environment, such as block-
based and drag-and-drop features, create a low learning barrier and a high ceiling for
programming achievement (Repenning et al., 2010; Resnick et al., 2009).

Since Dijkstra made this comment, programming has moved from an expert
and domain-specific literacy to an interdisciplinary skill deemed useful for cross-
domain applications. Although the extent of coverage and quality of programming
skills demonstrated at different learning levels may be contentious, the benefits of
learning programming across grade levels are abundant, including in early child-
hood (Bers et al., 2014; Kanaki & Kalogiannakis, 2018; Sullivan & Bers, 2019).
These benefits include improvements in mathematical thinking, creativity, meta-
cognition, confidence, language literacy, collaboration, and host of other 21st-cen-
tury skills (Denner et al., 2019; Popat & Starkey, 2019; Scherer et al., 2019).

Attempts to teach programming in K–12 date back to the 20th century. Notably,
Seymour Papert’s seminal work on Logo programming, procedural thinking, and
constructionism promoted a vision of children teaching computers to think
through programming (Papert, 1980). Fast forward to the early 21st century; Wing
(2006) called on computer science educators to extend the treasures of computing
by teaching everyone “ways to think like a computer scientist” (p. 35), also
referred to as computational thinking. Although computational thinking was
explicitly and conceptually differentiated from programming in Wing’s (2006)
seminal call, the association between them remains strong. Most researchers have
viewed programming activities as the underlying practice in learning computa-
tional thinking (Ezeamuzie & Leung, 2022). Furthermore, the socio-digital trans-
formations that influence the ways we live, study, and work in the 21st century
hinge on computer programs and reasonably require children to be conversant
with their operation literacy.

The lucidly supported need for programming education in K–12 and the con-
comitant awareness in schools evoke concerns about how to support programming
literacy effectively. In this regard, appropriate programming environments and ped-
agogies stand out as pillars that influence programming education. Several pedago-
gies have been highlighted in reviews (see Hsu et al., 2018; Lye & Koh, 2014;
Scherer et al., 2020). Although noteworthy progress has been recorded in K–12
programming education in the 21st century, some of the associated practices were

3

Ezeamuzie and Ezeamuzie

once challenged. For example, Dijkstra (1989) strongly criticized the argument that
a lack of appropriate programming platforms was responsible for software develop-
ment challenges. Dijkstra’s criticism is consistent with Soloway’s (1986) assertion
that the primary cog in the wheel of learning programming is the logical aspects of
programming (e.g., decomposition, abstraction) that entail “putting the pieces
together” (p. 850). However, several studies (e.g., Broll et al., 2018; Deng et al.,
2020; Yildiz Durak, 2020) found that features of programming environments aid
programming ability. This trajectory raises critical questions about the features and
affordances of the programming environments that influence learning.

Often, programming environments are described as either block-based or text-
based environments. In block-based environments, programmers drag and drop
visual blocks of code in logical patterns. Text-based environments indicate plat-
forms that require typing of textual codes with adherence to semantics and syntacti-
cal formats. To support educators who are increasingly tasked with supporting
learners in acquiring programming and to increase our knowledge of the nature of
programming environments beyond the dichotomy of block-based and text-based,
this study systematically examines the literature on K–12 programming to unearth
features of programming environments that influenced programming education in
the 21st century. Gaining clarity on how the features have evolved will make the
boundaries to programming more permeable and facilitate cross-disciplinary appli-
cations of programming literacy. Furthermore, recommendations of specific pro-
gramming platforms, while contemporarily useful, fade in impact as programming
environments evolve. Therefore, identifying the features that define environments
rather than simply highlighting some environments as effective, avoids the problem
posed by the transient nature of programming environments. This systematic review
taps into the riches of prior research to inform such understanding by synthesizing
and cross-checking the affordances of various programming environments.

Explicitly, the research question that guided this review is: Within the literature that
evaluated the development, design, and application of programming environments in
K–12, what dimensions informed the choice of programming environments? In this
study, programming environment is loosely conceived as platforms, gadgets, tools, or
applications that offer learners the capability to write program codes.

Background

In this section, we synthesize existing research by examining how program-
ming environments have been framed. These include evaluating features of spe-
cific environments, comparison of two environments, cross-analysis of multiple
environments and extant reviews on the influence of environments.

Insights From Evaluation and Comparison of Programming Environments

Studies that evaluated the effectiveness of specific programming environments
are insightful for understanding the underlying factors in choosing a program-
ming environment in K–12. For example, Messaging and Remote Procedure Call
are the unique features of NetsBlox, a visual programming environment used in
secondary schools (Broll et al., 2018). Similarly, studies that compared pro-
gramming environments such as Yildiz Durak’s (2020) comparison of the effects
of Scratch and Alice, are equally resourceful in choosing programming

Beyond Blocks and Texts in Programming

4

environments. In Deng et al. (2020), Visual Basic and PencilCode were compared
for their influence on learning programming. Findings from these studies sug-
gested that block-based environments eliminate syntax errors. Also, text-based
environments support more versatility than the limited functionality of block-based
environments. More so, PencilCode, a hybrid environment, bridged gaps between
block-based and text-based environments by combining blocks and texts.

However, evaluations of specific environments are prone to developers’ bias.
Also, isolated comparisons of two programming environments, while useful, do
not explain their relationships with the growing list of programming environ-
ments. The genre of studies (i.e., empirical studies evaluating and comparing
environments) are briefly reviewed here because they constitute suitable data for
the present systematic review, which seeks to determine how programming envi-
ronments relate or differ from one another holistically. Therefore, studies that
reported characteristics that facilitated or diminished the usage of specific pro-
gramming environments were analyzed in this study.

Cross-Analyses of Multiple Programming Environments

In the early 21st century, Gómez-Albarrán (2005) selected 20 widely adopted
programming environments and categorized each as a reduced-development envi-
ronment, example-based environment, visualization/animation environment, or
simulation environment. The reduced-development environments refer to envi-
ronments that recognized the overheads of complicated platforms and were pur-
posefully designed to mitigate the complexities by simplifying the interfaces. The
example-based environment created extensive programming examples as scaf-
folded starting points for learners to solve new programming problems.
Visualization/animation environments were deemed to facilitate programming by
demonstrating the behavior of the codes visually. The simulation environment
executes the program codes in an imaginary world. Gómez-Albarrán (2005)
argued that reduced-development environments (e.g., BlueJ) are appropriate for
novice programmers, whereas the other three categories of environments are pro-
visioned for in-depth programming learning. However, these claims were not
empirically validated, and most of the studied programming environments (except
BlueJ and Alice) are rarely used in today’s K–12 classrooms.

In a more recent study, Kraleva et al. (2019) focused on block-based program-
ming environments. They analyzed the environments in four dimensions: usabil-
ity and support, availability of learning resources, capabilities of the environment,
and the closeness of features to a conventional programming language. They
flagged Scratch and Code.org as the recommended environments. In another
cross-analysis of 26 block-based environments by in-service computer science
teachers, João et al. (2019) designated programming environments such as
ScratchJr, Lego Bricks, and Bee-bot as appropriate for kindergarteners, whereas
Scratch, Tinker IDE, m-Block, and Code Monkey were adjudged to be the most
flexible.

However, programming environments are transient. It is important to under-
stand how programming environments could be theoretically modeled. This
understanding will inform the design or selection of environments that meet
learners’ learning objectives.

5

Ezeamuzie and Ezeamuzie

Lessons From Review Studies of Research Articles

The influence of programming environments was one of the concerns in a
scoping review (Palumbo, 1990) that sought to unpack the relationship between
programming and problem solving. Palumbo (1990) found that Logo, BASIC,
and Pascal were the predominant languages for learning to program. Also, BASIC
was reported as unstructured and the least effective in problem-solving. These
environments, which were dominant in the 1990s, are highlighted here to demon-
strate how much programming platforms have changed. Languages such as
BASIC and Pascal are rarely mentioned in K–12 and distinctly contrast the ever-
growing list of programming environments, including visual platforms.

As most visual programming environments are designed to mitigate the cogni-
tive challenges of learning programming, Kuhail et al. (2021) were interested in
understanding the usage trends of visual programming environments when they
analyzed 30 articles that reported activities of end-users or novice programmers
between 2010 and 2020. They categorized visual programming platforms into
four categories according to the implementation technique: block-based, diagram-
based, form-based, and icon-based. Through their inquiry, Kuhail et al. (2021)
showed that block-based and diagram-based platforms were the predominant pro-
gramming environment type. However, the underlying characteristics of the envi-
ronments in facilitating learning programming are unknown as most of the articles
did not report on their platforms’ usability. The rarely used text-based environ-
ments (Palumbo, 1990) and a dearth of understanding concerning the underlying
features of virtual programming environments (Kuhail et al., 2021) leaves ques-
tions regarding the suitability of environments, the rationale for choosing pro-
gramming environments, and the platforms’ adaptability to K–12.

Additional insights about programming environments were reported in the fol-
lowing tool-specific reviews. Zhang and Nouri (2019) sought to understand what
students can learn in Scratch in their systematic review of 55 empirical studies on the
use of Scratch in K–9 education. Results showed that Scratch supported the develop-
ment of predictive thinking and human-computer interaction. Also, learners’ devel-
opment of computational thinking concepts, practices, and perspectives as framed in
Brennan and Resnick's (2012) three-dimensional framework was validated in
Scratch. However, Zhang and Nouri’s (2019) systematic review did not explain how
the features of Scratch enabled the acquisition of the above skills. Another platform-
dependent study was reported in a meta-analysis that examined the effectiveness of
Alice software in comparison with conventional programming languages (Costa &
Miranda, 2017). Although Alice was determined to be marginally more effective
than other conventional programming environments, this finding was based on six
quasi-experimental studies and confounded by this statistical limitation.

Method

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) was adopted for this study. Originally designed for systematic reviews
and meta-analyses in medical research (Moher et al., 2009), PRISMA offers
invaluable standards for systematic reviews in other fields. Figure 1 summarizes
the identification and screening procedures for eligible studies.

6

Identification of Studies

Web of Science and Scopus were selected as databases because they index
abstracts from multidisciplinary research with comprehensive coverage of high-
quality journals and proceedings. To select search terms that are broad yet capable

Full-text articles eligible for inclusion in the qualitative synthesis.
(n = 111)

Identify records through database search. Databases = Web of Science and
Scopus. See Table 1 for search terms. Period = 2000 – 2021.
Records retrieved (n = 168,993)Id

en
ti

fy

Abstract Screening.
Exclude ineligible articles including reviews, higher education, and theoretical
discourse. Records screened (n = 997), Records excluded (n = 751)
Record retained (n = 246)

Full-Text
Screening.

Pre-processing Screening

(a) Selected articles in educational, computing, and interdisciplinary journals
(b) Remove duplicates
Records screened (n = 168,993), Records excluded (n = 167,996)
Record retained (n = 997)

S
cr

ee
n

Full text of articles were screened to exclude those that do not meet the
inclusion criteria and were not clearly identified by abstract screening. Records
screened (n = 263), Records excluded (n = 152)
Record retained (n = 111)

Scour journals and track references.
Records included (n = 17)

In
cl

u
d

e

Figure 1.  Flow Diagram of Search Strategies and Screening for Eligible Studies for
Review.

Ezeamuzie and Ezeamuzie

7

of identifying high-quality studies, we adopted Luxton-Reilly and colleagues’
(2018) approach and tested various search terms iteratively. Table 1 shows the
selected optimal phrasal keywords for the database search. Although this review
is focused on programming in K–12, we included computational thinking as part
of the search term because of the evidence that many computational thinking stud-
ies in K–12 engaged students in programming activities (Ezeamuzie & Leung,
2022; Lye & Koh, 2014). The search was further restricted to English peer-
reviewed articles published between 2000 and 2021. The identification stage
yielded 168,993 documents (Web of Science n = 96,681; Scopus n = 72,312).

Screening and Eligibility of Documents

With the initial pool of documents identified, an empirical study with K–12
participants was selected if the article

1.	 evaluated the development or implementation of a programming environ-
ment, or

2.	 compared two or more programming environments, or
3.	 reported the effect of programming environments.

The above criteria formed the eligibility parameters for screening the docu-
ments and were implemented in three sequential stages: pre-processing, abstract
screening, and full-text screening.

Pre-processing—using the database filters, we limited the pool to educational,
computing, and interdisciplinary journals as learning programming was out of the
scope of other categories. Duplicates from the independent databases were also
excluded. The pre-processing stage resulted in the exclusion of 167,996 articles,
leaving 997 articles for abstract screening. The reliability of pre-processing
screening was tested by selecting 100 articles randomly from the initial pool of
articles (n = 168,993). Based on the inclusion criteria, another member of the
research team read the titles and abstracts of the articles, and coded to accept or
reject the articles independently. The process resulted in 99% agreement with the
pre-processing screening.

Abstract screening—100 articles were randomly selected from the remaining
pool (n = 997). Two members of the research team read the 100 selected articles
and classified them as accept or reject. Members were advised to accept an article
when in doubt. Interrater reliability analysis showed 97% agreement between
coders. For the three articles that were coded differently, the research team dis-
cussed the disagreement, reiterated the inclusion criteria, and reached a consen-
sus. The abstracts of the remaining articles (n = 897) were screened by the first
author. When in doubt, the first author assigned the article to the accepted pool for
further review by the research team and full-text screening. The research team
met for 2 hours every week to review the outcomes of the abstract screening,
which lasted for 4 weeks. The abstract screening resulted in the exclusion of 751
articles, leaving 246 articles for full-text screening.

Full-text screening—Before the full-text screening of the remaining 246 arti-
cles, we scoured journals that contributed more than 5% to the pool. Also, we

8

searched for eligible articles from previous reviews and meta-analyses that inves-
tigated programming. Scherer and colleagues’ (2019) meta-analysis on the cogni-
tive gains of programming was particularly useful, pointing to 15 other valuable
reviews. The reference backtracking and journal scouring culminated in the inclu-
sion of 17 articles, leaving 263 articles for full-text screening. Two members of
the research team screened the full text of the remaining articles. Differences in
coding were discussed and mutually agreed upon. The screening phase concluded
with the exclusion of 152 documents and the retention of 111 eligible studies for
charting.

Most of the excluded articles were reviews/meta-analyses/theoretical dis-
course (e.g., Hsu et al., 2018; Hu et al., 2020; Macrides et al., 2022; Scherer et al.,
2020), having participants from higher education (e.g., Kim et al., 2013; Wang &
Hwang, 2017) and using teachers as study participants (e.g., Hadad et al., 2021;
Kong et al., 2020).

Data Analysis

Prior works (e.g., Gómez-Albarrán, 2005; Kraleva et al., 2019; Kuhail et al.,
2021) revealed how programming environments may be classified or recom-
mended some specific but transient platforms. For example, Gómez-Albarrán
(2005) categorized programming environments into the reduced-development
environment, example-based environment, visualization/animation environment,
or simulation environment. Scratch and Code.org were recommended in Kraleva
and colleagues’ (2019) analysis of programming environments’ usability, avail-
ability, capabilities, and the closeness of their features to conventional language.
However, the objective of this review is neither to create a classification nor rec-
ommend any programming environment. We aim to deconstruct the spectrum of
features that influence the choice of programming environments from the
researchers’ perspective. Tying back to the research objective, we stepped back to
assimilate how the data provided perspective on the research questions through a
two-stage process: coding and charting.

Table 1

Optimal Phrasal Keywords for Database Search

Database Phrasal Keyword

Web of Science TS = ([learn OR acquire OR develop OR teach OR assess OR
instruct] AND "programming") OR TS = ([learn OR acquire OR
develop OR teach OR assess OR instruct] AND "computational
thinking")

Scopus TITLE-ABS-KEY ([learn OR acquire OR develop OR teach OR
assess OR instruct] AND "programming") OR TITLE-ABS-KEY
([learn OR acquire OR develop OR teach OR assess OR instruct]
AND "computational thinking")

Note: TS and TITLE-ABS-KEY indicate that the search is limited to the Title, Abstract, and
Keyword fields only.

Ezeamuzie and Ezeamuzie

9

First Stage: Coding
According to Saldaña (2016), a “code” is a word or short phrase that sums or

captures the salient attribute of a portion of data and a “category” represents a
progressive collection of related codes. Guided by Saldaña’s (2016) qualitative
coding framework, two members of the research team summarized the 111 eligi-
ble articles to highlight the features of interest independently. For each article, the
abstract and two summaries were collated as a case for further analysis in NVivo,
a qualitative data analysis software (https://www.qsrinternational.com/).

For each case in NVivo, relevant codes related to the affordance of the program-
ming environments were extracted. As coding progressed, related codes were
mapped into categories iteratively. While the coding exercise was conveyed in an
ordered and orderly manner, it entailed several iterations of reading and backtrack-
ing as needs arose for adding, deleting, and clarifying code definition. For exam-
ple, Magerko et al. (2016) is a Nvivo case that described the rationale and evaluation
of EarSketch, an environment that combined programming and music production.
In the first round of coding, music production emerged as one of the codes from the
case. Also, Rodríguez-Martínez et al. (2020) were interested in how Scratch sup-
ported learning mathematics in grade six. We added mathematics as another code.
With the coding of other Nvivo cases yielding codes such as the gameplay in
Autothinking (Hooshyar et al., 2021), further relationship analysis, using NVivo,
showed that type of projects supported in an environment (codes: music, mathe-
matics, gameplay) influenced researchers’ choices and design of programming
environments. Hence, project type was identified as a category. The coding stage
culminated in the identification of eight major categories/thematic dimensions of
programming environments.

Second Stage: Charting
Charting involved reading the 111 articles (please see online supplementary

material) and categorizing their data across eight thematic dimensions. This stage
was convened to gain insight into how the selected studies have implemented the
dimensions identified from the first stage (coding). Two researchers read and
charted the articles independently. The research team met for 2 hours every week
to discuss the outcomes of the charting, and mutually resolved any variation. The
charting lasted for 6 weeks.

Findings and Discussion

Profile of Charted Studies

Table 2 shows the eight categories/thematic dimensions, sample codes, and
sample data that support the codes.

••  � Connectivity Mode – reflects whether a programming environment
requires Internet connections or not.

••  � Interface Natural Language – relates to how the linguistic design of
environments supports learners in their locale or native local language.

••  � Language Inheritance – denotes whether learners need to master the syn-
tax and semantics of a new programming language in an environment or

https://www.qsrinternational.com/

10

T
ab

l

e
 2

C
at

eg
or

ie
s,

 C
od

es
 a

nd
 S

am
pl

e
D

at
a

T
ha

t S
up

po
rt

 th
e

C
od

es

C
at

eg
or

y
S

am
pl

e
C

od
e

S
am

pl
e

S
up

po
rt

in
g

D
at

a
an

d
Q

uo
ta

ti
on

s

C
on

ne
ct

iv
it

y
O

nl
in

e
N

et
sB

lo
x

–
B

ui
ld

s
on

 th
es

e
co

nc
ep

ts
 to

 s
up

pl
y

pr
im

it
iv

es
 f

or
 s

yn
ch

ro
ni

za
ti

on
 a

nd
 c

om
m

un
ic

at
io

n
ac

ro
ss

 c
om

pu
te

rs
, p

ro
vi

di
ng

 a
 g

en
tl

e
in

tr
od

uc
ti

on
 to

 d
is

tr
ib

ut
ed

 c
om

pu
ti

ng
 (

B
ro

ll
 e

t a
l.,

 2
01

8,
 p

.
19

1)
.

O
ff

li
ne

K
IB

O
 –

 C
hi

ld
re

n
to

 s
ca

n
th

e
ba

rc
od

es
 o

n
th

e
bl

oc
ks

 a
nd

 s
en

d
th

e
pr

og
ra

m
 to

 th
ei

r
ro

bo
t

in
st

an
ta

ne
ou

sl
y—

no
 s

cr
ee

n
ti

m
e

fr
om

 a
n

iP
ad

, c
om

pu
te

r,
or

 o
th

er
 d

ig
it

al
 te

ch
no

lo
gy

 is
 r

eq
ui

re
d

(S
ul

li
va

n
&

 B
er

s,
 2

01
9,

 p
. 1

03
8)

.
O

nl
in

e
an

d
O

ff
li

ne
IR

ob
ot

Q
3D

 –
 V

ir
tu

al
 r

ob
ot

 p
la

tf
or

m
 p

ro
vi

de
s

on
li

ne
 a

nd
 lo

ca
l m

od
es

 f
or

 s
tu

de
nt

s
to

 le
ar

n
a

ro
bo

ti
cs

co

ur
se

 (
Z

ho
ng

 e
t a

l.,
 2

02
3,

 p
. 5

).
In

te
rf

ac
e

L
an

gu
ag

e
M

ul
ti

li
ng

ua
l

S
cr

at
ch

 –
 F

re
e,

 a
va

il
ab

le
 in

 n
ea

rl
y

50
 la

ng
ua

ge
s

(M
al

on
ey

 e
t a

l.,
 2

01
0,

 p
. 2

).
S

pa
ni

sh
A

lc
od

y
–

In
te

rf
ac

e
an

d
di

al
og

 w
it

h
A

lc
od

y
is

 c
ur

re
nt

ly
 o

nl
y

av
ai

la
bl

e
in

 S
pa

ni
sh

 (
M

or
al

es
-U

rr
ut

ia

et
 a

l.,
 2

02
1,

 p
. 6

64
8)

.
L

an
gu

ag
e

In
he

ri
ta

nc
e

D
er

iv
ed

C
od

eC
om

ba
t –

 S
up

po
rt

s
P

yt
ho

n
an

d
Ja

va
S

cr
ip

t a
nd

 it
 c

an
 b

e
us

ed
 o

nl
in

e
(K

ro
us

ta
ll

i &
 X

in
og

al
os

,
20

2,
 p

. 6
07

3)
.

C
on

ve
nt

io
na

l
Ja

va
 –

 D
oe

s
th

e
. 

. 
. p

er
fo

rm
ed

 b
et

te
r

on
 th

e
co

nt
en

t a
ss

es
sm

en
t m

ea
n

th
ey

 w
il

l c
on

ti
nu

e
to

 p
er

fo
rm

be

tt
er

 in
 a

 p
ro

fe
ss

io
na

l t
ex

t-
ba

se
d

la
ng

ua
ge

 li
ke

 J
av

a?
 (

W
ei

nt
ro

p
&

 W
il

en
sk

y,
 2

01
7,

 p
. 2

2)
.

A
ge

 a
nd

 G
ra

de
K

in
de

rg
ar

te
n,

L

ow
er

E

le
m

en
ta

ry

S
cr

at
ch

Jr
 –

 D
es

cr
ib

es
 th

e
go

al
s

an
d

ch
al

le
ng

es
 o

f
cr

ea
ti

ng
 a

 d
ev

el
op

m
en

ta
ll

y
ap

pr
op

ri
at

e
pr

og
ra

m
m

in
g

to
ol

 f
or

 c
hi

ld
re

n
ag

es
 5

–7
 (

F
la

nn
er

y
et

 a
l.,

 2
01

3,
 p

. 1
).

L
ow

er

E
le

m
en

ta
ry

,
U

pp
er

E

le
m

en
ta

ry

To
ri

no
 –

 P
hy

si
ca

l p
ro

gr
am

m
in

g
la

ng
ua

ge
 f

or
 te

ac
hi

ng
 c

om
pu

ta
ti

on
al

 le
ar

ni
ng

 to
 c

hi
ld

re
n

ag
es

 7
–1

1
re

ga
rd

le
ss

 o
f

le
ve

l o
f

vi
si

on
 (

M
or

ri
so

n
et

 a
l.,

 2
02

1,
 p

. 5
35

).

C
os

t o
f

E
nv

ir
on

m
en

t
F

re
e

S
cr

at
ch

 –
 F

re
e,

 a
va

il
ab

le
 in

 n
ea

rl
y

50
 la

ng
ua

ge
s

(M
al

on
ey

 e
t a

l.,
 2

01
0,

 p
. 2

).
P

ai
d

P
ho

go
 –

 C
om

bi
ne

s
P

yt
ho

n,
 A

rd
ui

no
 a

nd
 3

D
 p

ri
nt

in
g

in
to

 a
 lo

w
 c

os
t r

ob
ot

 th
at

 is
 e

as
y

to
 b

ui
ld

 a
nd

co

nt
ro

l (
M

ol
in

s-
R

ua
no

 e
t a

l.,
 2

01
8,

 p
. 4

28
).

(c
on
tin
ue
d)

11

C
at

eg
or

y
S

am
pl

e
C

od
e

S
am

pl
e

S
up

po
rt

in
g

D
at

a
an

d
Q

uo
ta

ti
on

s

In
pu

t I
nt

er
fa

ce
Ic

on
-b

as
ed

B
om

be
rb

ot
 –

 T
o

co
ns

tr
uc

t a
 p

ro
gr

am
 in

 B
om

be
rb

ot
, t

he
 n

ec
es

sa
ry

 p
ro

gr
am

m
in

g
co

m
m

an
ds

 c
an

be

 d
ra

gg
ed

 f
ro

m
 th

e
li

br
ar

y
on

 th
e

le
ft

 a
nd

 d
ro

pp
ed

 in
to

 th
e

m
ai

n
pr

og
ra

m
. .

 .
 .

 [
T

he
]

li
br

ar
y

co
nt

ai
ns

 a
 s

el
ec

ti
on

 o
f

pi
ct

og
ra

ph
ic

al
 c

om
m

an
ds

, s
uc

h
as

 f
or

w
ar

d,
 b

ac
kw

ar
d,

 tu
rn

 le
ft

, t
ur

n
ri

gh
t

(F
an

ch
am

ps
 e

t a
l.,

 2
02

1,
 p

. 6
48

5)
.

H
yb

ri
d

F
li

p
–

H
as

 tw
o

m
ai

n
co

m
po

ne
nt

s:
 (

1)
 a

 v
is

ua
l l

an
gu

ag
e,

 a
nd

 (
2)

 a
 d

yn
am

ic
al

ly
 u

pd
at

in
g

na
tu

ra
l

la
ng

ua
ge

 (
H

ow
la

nd
 &

 G
oo

d,
 2

01
5,

 p
. 2

24
).

Ta
ng

ib
le

Ta
lk

oo
 –

 C
om

pr
is

es
 p

hy
si

ca
l c

om
pu

ti
ng

 p
lu

g-
an

d-
pl

ay
 m

od
ul

es
, a

 v
is

ua
l p

ro
gr

am
m

in
g

en
vi

ro
nm

en
t

an
d

pr
ot

ot
yp

in
g

m
at

er
ia

l (
K

at
te

rf
el

dt
 e

t a
l.,

 2
01

8,
 p

. 7
4)

.
O

ut
pu

t I
nt

er
fa

ce
3D

K
od

u
–

E
na

bl
es

 c
hi

ld
re

n
an

d
te

en
ag

er
s

to
 c

re
at

e
3D

 g
am

es
 b

y
of

fe
ri

ng
 . 

. 
. c

ar
to

on
is

h
ob

je
ct

s
an

d
ch

ar
ac

te
rs

, a
nd

 a
 s

et
 o

f
m

an
ip

ul
at

io
n

to
ol

s
to

 b
ui

ld
 th

e
ga

m
es

’ l
an

ds
ca

pe
 (

F
ok

id
es

, 2
01

7,
 p

. 4
82

).
A

ud
io

To
ri

no
 –

 T
o

cr
ea

te
 c

od
e,

 c
hi

ld
re

n
co

nn
ec

t p
hy

si
ca

l i
ns

tr
uc

ti
on

 p
od

s
an

d
tu

ne
 th

ei
r

pa
ra

m
et

er
 d

ia
ls

 to

cr
ea

te
 m

us
ic

, a
ud

io
 s

to
ri

es
, o

r
po

et
ry

 (
M

or
ri

so
n

et
 a

l.,
 2

02
1,

 p
. 5

35
).

D
ep

lo
ya

bl
e

A
pp

In
ve

nt
or

 –
 A

 p
ro

gr
am

m
in

g
en

vi
ro

nm
en

t t
ha

t a
ll

ow
s

ev
er

yo
ne

, e
ve

n
ch

il
dr

en
, t

o
bu

il
d

fu
ll

y
fu

nc
ti

on
al

 a
pp

li
ca

ti
on

s
(a

pp
s)

 f
or

 s
m

ar
tp

ho
ne

s
an

d
ta

bl
et

s
(S

er
al

id
ou

 &
D

ou
li

ge
ri

s,
 2

01
9,

 p
. 2

24
6)

.
P

ro
je

ct
 T

yp
e

G
am

e
D

es
ig

n
R

ob
oB

ui
ld

er
 –

 T
he

 in
te

rf
ac

e
ha

s
tw

o
di

st
in

ct
 c

om
po

ne
nt

s:
 a

 p
ro

gr
am

m
in

g
en

vi
ro

nm
en

t .
 .

 .
 w

he
re

pl

ay
er

s
de

fi
ne

 a
nd

 im
pl

em
en

t t
he

ir
 r

ob
ot

’s
 s

tr
at

eg
y;

 a
nd

 a
n

an
im

at
ed

 r
ob

ot
 b

at
tl

eg
ro

un
d

. 
. 

.
w

he
re

 p
la

ye
rs

 w
at

ch
 th

ei
r

ro
bo

t c
om

pe
te

 (
W

ei
nt

ro
p

&
 W

il
en

sk
y,

 2
01

4,
 p

. 3
09

).
G

am
e

P
la

y
A

ut
oT

hi
nk

in
g

–
C

on
si

st
s

of
 th

re
e

le
ve

ls
 in

 w
hi

ch
 a

 p
la

ye
r

sh
ou

ld
, i

n
th

e
ro

le
 o

f
a

m
ou

se
, d

ev
el

op

di
ff

er
en

t t
yp

es
 o

f
st

ra
te

gi
es

 a
nd

 s
ol

ut
io

ns
 to

 c
om

pl
et

e
th

e
le

ve
ls

, .
 .

 .
 a

t t
he

 s
am

e
ti

m
e

es
ca

pi
ng

fr

om
 tw

o
ca

ts
 in

 th
e

m
az

e
(H

oo
sh

ya
r

et
 a

l.,
 2

02
1,

 p
. 3

89
).

M
us

ic
E

ar
S

ke
tc

h
–

A
 le

ar
ni

ng
 e

nv
ir

on
m

en
t t

ha
t c

om
bi

ne
s

co
m

pu
te

r
pr

og
ra

m
m

in
g

w
it

h
sa

m
pl

e-
ba

se
d

m
us

ic
 p

ro
du

ct
io

n
to

 c
re

at
e

a
co

m
pu

ta
ti

on
al

 r
em

ix
in

g
en

vi
ro

nm
en

t (
M

ag
er

ko
 e

t a
l.,

 2
01

6,
 p

. 1
)

T
ab

le
 2

. 
(c

on
ti

nu
ed

)

Beyond Blocks and Texts in Programming

12

not. Whether an environment was charted as conventional or derived
depends on how the authors described the underpinning programming
language of the environment. The traditional programming languages
(e.g., Python, Java, JavaScript) are generally regarded as conventional.
When the programming language of an environment is an extension of an
existing language, it was charted as derived. For example, CodeCombat
(Kroustalli & Xinogalos, 2021) was charted as derived because students
wrote codes in Python—a conventional language.

••  � Age and Grade Appropriateness – shows the relationship between learn-
ers’ developmental stage and the suitability of the programming envi-
ronments. The programming environments were classified into five
categories based on the recommended users’ age: (a) kindergarten (less
than 6 years of age), (b) lower elementary (6–9 years), (c) upper elemen-
tary (9–12 years), middle school (12–15 years), and high school (15–18
years).

••  � Cost of Environment – identifies the cost involved in using a program-
ming environment, whether it requires a paid subscription or a free
platform.

••  � Input Interface – describes approaches for keying in codes in a program-
ming environment. Besides the block-based and text-based code entry,
other formats reported in the literature include icon-based, hybrid, and
tangible input interfaces. Icon-based environments are special type of
block-based environment where pictorial symbols are used as com-
mands (Kuhail et al., 2021). Hybrid environments provide both text-
based and block-based coding input interfaces. Tangible environments
represent a special approach to keying in codes with physical blocks;
without using the computer mouse, keyboard, and screen.

••  � Output Interface – describes how program codes are rendered. Often,
vocabularies such as block-based, drag-and-drop, visual and text-based
refer to environments without distinguishing the nature of input (keying
in codes) and output (rendering the codes). For example, in analyzing
the learning outcomes and attitudes of primary school students in a
visual environment, Sáez-López et al. (2016) described Scratch as a
visual environment. Although the execution of the Scratch program ren-
ders as a visual output of a game and interactive agents, differentiating
between the approach for keying in codes (input) and the forms of ren-
dering the codes (output), emerged as an important dimension for
describing programming environments. The formats of rendering output
in programming environments include visual, 3D, deployable, audio,
hardware control, virtual reality, and text.

••  � Project Type – provides insight into how diverse programming environ-
ments are provisioned to support different types of learning activities.
Although not exhaustive, common types of projects include animation,
digital stories, game design, gameplay, music composition, simulation,
mathematics, mobile apps, and standard apps.

Ezeamuzie and Ezeamuzie

13

Table 3 summarizes the profile of the programming environments from the
eligible studies (n = 111) in eight dimensions. These attributes and how they
influence programming are examined in this section.

Missing data is an important attribute of the charted data in Table 3. As the
name implies, it represents the number of studies from which the value of each
dimension could not be extracted. This ranged from 24% of input interface (n =
27) to 93% of interface natural language (n = 103). The considerable proportion
of dimensions that could not be determined is understandable, as the values in
popular environments were often implied in the articles, but charting was strictly
based on the data extracted from articles. For example, in an investigation of how
the nature of a task influences programming, Erümit (2020) did not specify fea-
tures of Scratch, such as whether it was provisioned to work online or offline.
Although we knew that Scratch has both offline and online modes, the connectiv-
ity dimension of the article was coded as missing data as the author did not specify
this feature. The same approach was adopted in coding the other dimensions.
Other alternative explanations exist for the missing data. For instance, it might
reflect dimensions of a programming environment that researchers have focused
on or ignored. Also, brevity, journals’ word count restrictions, and other commu-
nication purposes might have hindered authors from reporting certain details. The
input and output interface attracted the most attention from prior work, and the
interface natural language, grade level/age appropriateness, and programming
language inheritance received the least attention.

Figure 2 is a simple word cloud visualization of the programming environ-
ments presented in the charted articles. The font size of a word is directly propor-
tional to the observed frequency of the word. Scratch, Lego, Python, Kibo, and
Alice are the most popular programming environments within the eligible studies.
Note that the objective of this study was neither to compare environments nor to
elevate certain environments as ideal platforms. As highlighted in the following
thematic discussion, an ideal platform does not exist without context. Rather, the
focus of this review was to synthesize the nature of programming environments as
reported in peer-reviewed articles that embodied researchers’ perspectives. The
highlighted models will assist in making informed decisions about programming
environments.

Connectivity

About 77% of the charted articles (n = 86) did not specify the connectivity
mode of the discussed environment. We pondered whether researchers had per-
ceived connectivity features as implied or the likelihood that a substantial number
of the eligible studies might have been conducted in regions with good penetra-
tion of high-speed and affordable Internet connections, which invariably may
have diminished concern for connectivity. Since the geographical distribution of
the studies was not captured in the chart, no conclusive inference could be drawn.
Moreover, mapping the regions by levels of internet access may be an oversimpli-
fication of connectivity issues. For instance, Katz et al. (2017) found that the
quality of internet connection remains a serious issue in the United States.

14

T
ab

l

e
 3

Su
m

m
ar

y
of

 th
e

P
ro

fi
le

s
of

 th
e

P
ro

gr
am

m
in

g
E

nv
ir

on
m

en
ts

S
tu

dy
 C

ha
ra

ct
er

is
ti

c
V

al
ue

 (
n,

 %
)

a

C
on

ne
ct

iv
it

y
O

nl
in

e
(1

6,
 1

4%
),

 o
ff

li
ne

 (
5,

 5
%

),
 b

ot
h

(4
, 4

%
),

 m
is

si
ng

 d
at

a
(8

6,
 7

7%
)

In
te

rf
ac

e
N

at
ur

al
 L

an
gu

ag
e

S
in

gl
e

no
n-

E
ng

li
sh

 (
3,

 3
%

),
 m

ul
ti

-l
an

gu
ag

e:
 r

an
ge

 2
–7

0
la

ng
ua

ge
s

(5
, 5

%
),

 m
is

si
ng

 d
at

a
(1

03
, 9

3%
)

P
ro

gr
am

m
in

g
L

an
gu

ag
e

In
he

ri
ta

nc
eb

D
er

iv
ed

 (
15

, 1
4%

),
 c

on
ve

nt
io

na
l (

12
, 1

1%
),

 m
is

si
ng

 d
at

a
(9

3,
 8

4%
)

G
ra

de
 L

ev
el

/A
ge

b
K

in
de

rg
ar

te
n:

 <
 6

 y
ea

rs
 (

7,
 6

%
),

 lo
w

er
 e

le
m

en
ta

ry
: 6

–9
 y

ea
rs

 (
15

, 1
4%

),
 u

pp
er

 e
le

m
en

ta
ry

: 9
–1

2
ye

ar
s

(9
, 8

%
),

 m
id

dl
e

sc
ho

ol
: 1

2–
15

 y
ea

rs
 (

9,
 8

%
),

 h
ig

h
sc

ho
ol

: 1
5–

18
 y

ea
rs

 (
6,

 5
%

),
 m

is
si

ng
 d

at
a

(9
5,

 8
6%

)
S

ub
sc

ri
pt

io
n

M
od

eb
F

re
e

(1
3,

 1
2%

),
 p

ai
d

(3
3,

 3
0%

),
 m

is
si

ng
 d

at
a

(7
5,

 6
8%

)
O

ut
pu

t I
nt

er
fa

ce
b

V
is

ua
l (

37
, 3

3%
),

 3
D

 (
11

, 1
0%

),
 d

ep
lo

ya
bl

e
(5

, 5
%

),
 v

ir
tu

al
 r

ea
li

ty
 (

1,
 1

%
),

 a
ud

io
 (

1,
 1

%
),

 te
xt

 (
3,

3%

),
 h

ar
dw

ar
e

co
nt

ro
l (

21
, 1

9%
),

 m
is

si
ng

 d
at

a
(4

2,
 3

8%
)

In
pu

t I
nt

er
fa

ce
b

B
lo

ck
-b

as
ed

 (
45

, 4
1%

),
 te

xt
-b

as
ed

 (
22

, 2
0%

),
 ic

on
-b

as
ed

 (
5,

 5
%

),
 h

yb
ri

d
(7

, 6
%

),
 ta

ng
ib

le
 (

13
,

12
%

),
 m

is
si

ng
 d

at
a

(2
7,

 2
4%

)
P

ro
gr

am
m

in
g

P
ro

je
ct

 T
yp

eb
A

ni
m

at
io

n
(5

, 5
%

),
 d

ig
it

al
 s

to
ry

 (
7,

 6
%

),
 g

am
e

de
si

gn
 (

15
, 1

4%
),

 g
am

e
pl

ay
 (

10
, 9

%
),

 m
us

ic

co
m

po
si

ti
on

 (
3,

 3
%

),
 s

im
ul

at
io

n
(1

7,
 1

5%
),

 m
at

he
m

at
ic

s
(1

, 1
%

),
 m

ob
il

e
ap

ps
 (

1,
 1

%
),

 s
ta

nd
ar

d
ap

ps
 (

1,
 1

%
),

 m
is

si
ng

 d
at

a
(6

1,
 5

5%
)

N
ot

e.
 a P

er
ce

nt
ag

e
(%

)
w

as
 r

ou
nd

ed
 to

 a
 w

ho
le

 n
um

be
r

an
d

th
e

su
m

 o
f

m
ut

ua
ll

y
ex

cl
us

iv
e

it
em

s
of

 a
 s

tu
dy

 c
ha

ra
ct

er
is

ti
c

m
ay

 n
ot

 r
ou

nd
 to

 1
00

. b V
al

ue
s

fo
r

th
e

st
ud

y
ch

ar
ac

te
ri

st
ic

s
ar

e
no

t m
ut

ua
ll

y
ex

cl
us

iv
e.

15

Although the United States may stand in the league of technology advanced
regions, in a national telephone survey of parents of school-aged children that
reported less than the national median household income, 52% of participants
described their internet connection as too slow for practical use (Katz et al., 2017).
Apart from the studies that did not provide any information about connectivity
mode, most of the studies that identified connectivity types did not highlight them
as a feature of concern—whether as a promoter or inhibitor of learning program-
ming. Four studies explicitly identified the programming environments adopted
as both online and offline: Scratch (Erol and Çırak, 2022; Maloney et al., 2010),
IRobotQ3D (Zhong et al., 2023), and mBlock (Matere et al., 2023).

Although the paucity of studies that highlighted connectivity seems to dimin-
ish the concern, using offline environments impedes programming in some cases.
In regions without Internet service or in which such a service is costly, students
are often confronted with additional challenges, such as instability in download-
ing or updating the programming environment, demanding configuration of the
environment, and limited computing power/resources of some personal comput-
ers in solving computationally intensive tasks. Ezeamuzie (2023) highlighted
some of the challenges of internet connection in an exploratory intervention in a

Figure 2.  Word Cloud Representation of Programming Environments From Eligible
Articles.

Beyond Blocks and Texts in Programming

16

technology-deprived school. The choice of Python IDLE, an offline programming
environment for middle school learners in Ezeamuzie (2023), was primarily a
result of the connectivity constraint. However, these challenges could be miti-
gated in some online programming environments such as Google Colaboratoy—a
browser-hosted Jupyter notebook service that requires no configuration, provides
access to free cloud computing resources, and makes sharing of projects easy
(Google, n.d.). How programming environments can enable social interaction in
remote places with limited Internet connections remains unclear. In the lens of
Spector’s (2005) educratic oath, which encapsulates educators’ obligation to
design learning in ways that neither impair learning nor discriminate against
learners, future research needs to investigate the impacts as well as formulate
solutions for learning programming amongst learners with limited internet
connectivity.

Interface Natural Language

A large proportion of the charted articles (n = 103; 93%) did not specify the
natural language nor the number of languages supported in their programming
environment. Considering that only English publications were reviewed, a plau-
sible inference is that majority of the studied environments support, at minimum,
learners who can read and write in English. Furthermore, conventional program-
ming languages (e.g., Java, Python, JavaScript) are English dominated.

The importance of learners’ first or native language for K–12 learners’ pro-
gramming ability cannot be over-emphasized. For example, Lau and Yuen (2011)
found that Chinese students who were taught programming in their native lan-
guage outperformed their peers who received instruction in English. The natural
language was influential in the design of Alcody, an emotional-learning support
system for programming in Spanish (Morales-Urrutia et al., 2021) and Let’s Code
in Arabic (Almanie et al., 2019).

Although English assumes a central role in programming, educators may find
that for students, especially in kindergarten and elementary school, situating a pro-
gramming environment in a localized and relatable linguistic context may facilitate
their learning. A preferable alternative is designing environments with multilingual
support. For example, CodeCombat and Scratch support over 50 languages
(Kroustalli & Xinogalos, 2021) and 70 languages (Erol & Çırak, 2022), respec-
tively. Environments that support multiple languages (e.g., Scratch), especially free
platforms, promote both wide and cross-cultural applications of the environment.

Using learners’ native language as the natural language in a programming
environment seems promising as learners can focus on the intricacies of program-
ming without linguistic barriers. While the influence of the interface natural lan-
guage seems to be overlooked in charted studies, future studies can add to the
knowledge of K–12 programming by investigating the effect of programming in
various localizeed languages.

Programming Language Inheritance

Environments in the conventional category (n = 12; 11%) include Python
(e.g., Efecan et al., 2021; Sentance et al., 2019), Java (Weintrop & Wilensky,
2017, 2019), ActionScript (Navarrete, 2013), C (Sun & Hsu, 2019), and Visual

Ezeamuzie and Ezeamuzie

17

Basic (Deng et al., 2020). Amongst the conventional category, Python was most
dominant, appearing in seven studies. The conventional languages (e.g., Python,
Java, or C) offer cross-platform reusability. For example, students programmed
with Python in CodeCombat (Kroustalli & Xinogalos, 2021) and Java in Greenfoot
(Kölling, 2016). Although conventional languages offer the flexibility of reuse in
other environments, studies in the charted pool focused on the language per se,
without emphasizing the environment. In the lens of cognitive load theory, the
way information is presented on an interface constitutes the extraneous load
(Sweller et al., 1998). Therefore, educators need to pay attention to the effect of
the interfaces that support conventional languages, which may influence learning
too.

Most of the programming environments (n = 93; 84%) did not identify any
underpinning conventional programming language. In the absence of this infor-
mation, one possible interpretation is that such environments require students to
learn their syntax and semantics. On the contrary, and understandably, categoriz-
ing some environments as implementing distinct programming languages may be
contentious. For example, block-based environments such as Scratch, App
Inventor, and Webduino (Wu & Chen, 2022) are derived from the Google Blockly
JavaScript Library (Blockly, n.d.). In any case, even when the environments
derived their underpinning programming language from Blockly, they are inde-
pendently and distinctly provisioned in their respective environments. Implicitly,
they have different semantics from Blockly and may not be regarded as the same
language.

For developers of programming environments, it is important to consider the
aspect of programming language reusability. MaLT2, a 3D game design platform
for creating dynamic objects, inherited Logo (Grizioti & Kynigos, 2021). Java is
the underlying language in Greenfoot and BlueJ (Kölling, 2016). CodeCombat
(Kroustalli & Xinogalos, 2021) inherited Python and JavaScript too. OpenSim
with S4SL, a block-based environment, inherited Scratch (Pellas & Vosinakis,
2018). In the derived programming environments (n = 15, 14%), the syntax and
semantics of the programming language of the environment are the same as those
of the parent language. Hence, learners can migrate to other environments, espe-
cially when some environments support limited functionality.

Age and Grade Appropriateness

The awareness that learners’ needs differ according to age necessitated the
development of ScratchJr, a minified implementation of Scratch, to permit
younger children to learn programming in developmentally appropriate ways
(Flannery et al., 2013; Strawhacker et al., 2018). Other developmentally appropri-
ate environments have embedded core principles in designing learning in early
childhood education, including minimal screen exposure, tangible components,
and extendibility to other crafts (Bers et al., 2013). Examples include KIWI
(Sullivan & Bers, 2016), Bee-bot (Angeli & Valanides, 2019), and Kibo (Relkin
et al., 2021; Sullivan & Bers, 2019), which are provisioned as tangible and screen-
free platforms for kids.

Sullivan and Bers (2019) recommended Kibo for children between 4 and 7
years. Using Kibo, Relkin et al. (2021) found that Grades 1 and 2 students

Beyond Blocks and Texts in Programming

18

(between 5 and 9 years old) developed sense of algorithm, modularity, and pattern
representation. Although the age of participants in Relkin et al. (2021) did not dif-
fer significantly from Sullivan and Bersʼs (2019) recommendation for KIBO,
learning may be impaired when much older learners use the environment.
Developmentally appropriate environments are not restricted to finding suitable
environments for kindergarteners and elementary school children only. It also
demands ensuring that the choice of environments does not limit learning too.
Limited vocabulary in some environments may hinder effective learning for older
children. For instance, PhysGramming was designed with the theme of “object is
everywhere” to teach object-oriented programming to children aged between 4
and 8 years (Kanaki & Kalogiannakis, 2018). Learning object-oriented program-
ming is non-trivial even for expert programmers, and the notion that it could be
taught in early childhood and lower elementary is interesting. However, close
observation of the activities involved in teaching younger cohorts shows that
PhysGramming teaches object-oriented programming through games of solving
puzzles, matching objects, and grouping objects. The activities differ from object-
oriented programming in conventional languages like Java, where learners deal
with concepts such as inheritance, polymorphism, and encapsulation. Examining
whether PhysGramming activities are representative of object-oriented program-
ming is outside the scope of this study. However, the central point is that although
PhysGramming may be a suitable environment for the designers’ recommended
age (i.e., between 4 and 8 years), repurposing the environment for older children
may limit learning.

Most of the studies (n = 95; 86%) did not provide information about the age-
appropriateness of the programming environments they examined. Except for
Strawhacker and Bers’s (2015) comparison of the influence of interface style (tan-
gible, block-based, and hybrid) in learning programming among kindergarteners,
the few studies that highlighted the age-appropriateness of their programming
environments focused on the features of their specific environment only.
Strawhacker and Bers (2015) found inconclusive evidence of any association
between the nature of the interface and students’ understanding of programming
concepts. Future studies should consider comparing environments for their suit-
ability to learners of different ages and levels in terms of both developmental
appropriateness and limiting learning opportunities.

Cost of Environment

Only 12% of the articles (n = 13) identified their environments as free.
Examples include LightBot (Yallihep & Kutlu, 2020), Scratch (Erol & Çırak,
2022; Iskrenovic-Momcilovic, 2019; Sáez-López et al., 2016), ScratchJr
(Strawhacker et al., 2018), mBlock (Matere et al., 2023), and Blockly (Unal &
Topu, 2021). Articles that were classified as paid environments (n = 33; 30%)
represented studies that adopted hardware and robotic gadgets. Many of the
reviewed articles (n = 76; 68%) did not disclose whether the programming envi-
ronments were free or not. Probably, articles that adopted paid environments did
not disclose the associated cost, which may be a less interesting feature. On the
other hand, given that a free environment is a feature most studies would

Ezeamuzie and Ezeamuzie

19

highlight, the absence of such information in some articles may be attributed to
the notion that their free usage is implied (e.g., Scratch).

The cost of programming environments may appear trivial. However, it
becomes a significant dimension when inclusivity is the valued educational goal
(Spector, 2005). In the early 21st century, when computers were considered a
shared family gadget, the Raspberry Pi Foundation (n.d.) designed low-cost com-
puters to increase young children’s exposure to computing through personal own-
ership. Kölling (2016) narrated their efforts to complement Raspberry Pi’s
mission, describing the failure and subsequent success in porting Java-based
Greenfoot and BlueJ into Raspberry Pi’s standard distribution. From the reviewed
articles, there is a substantial number of studies that adopted tangible gadgets or
robots (n = 33; 30%). These hardware and robots come at a cost. Therefore, it is
necessary to understand how the cost of programming environments may influ-
ence inclusivity in learning.

Although what constitutes affordable programming environments is subjective,
among the studies that provided data on the cost of tangible gadgets, Arduino-based
environments ranked the most affordable. In a study that compared the influence of
solo and pair learning on students’ robotic troubleshooting ability, Zhong and Li
(2020) noted that Arduino was the least expensive from their analysis of robotic
platforms. A similar claim was made to justify choosing Arduino for a primary-
school, design-based learning experiment (Matere et al., 2023). Another Arduino-
based environment is Phogo (Molins-Ruano et al., 2018), a reimplementation of the
successful Logo programming from a virtual turtle to the physical Tortoise robot
that combines Python, an Arduino-like robot, and 3D printing at a low cost (US$80).
Besides, Arduino, Serrano Pérez and Juárez López (2019) reported other affordable
tangible gadgets in their analysis of educational tools, including a (US$25) ultra-
low-cost robot. However, Arduino has the unique advantage of a free and open-
source programming environment. Environments that build on the open-source
ecosystem promote the development of affordable hardware, sensors, and robots
that are interoperable (Zhong & Li, 2020).

Input Interface

Tangible environments (n = 13, 12%) support younger children and students
with special needs to program without typing on the computer keyboard.
According to Taylor (2018), the color-annotated Dash robot was chosen for early
primary school programming because concrete manipulatives help young learners
and students with special needs to learn more effectively. Using Kibo, young chil-
dren (Relkin et al., 2021; Sullivan & Bers, 2019) and people with Down syn-
drome (González-González et al., 2019) were able to snap tangible blocks together
to form programming instruction. When kids’ exposure to screens is a concern,
tangible environments mitigate the concern (Bers et al., 2014; Relkin et al., 2021;
Sullivan & Bers, 2019).

Other examples of tangible environments include Torino for visually impaired
children (Morrison et al., 2021) and Talkoo Kit (Katterfeldt et al., 2018). With
Talkoo Kit, the programming process is inverted by de-emphasizing the use of
computers and promoting collaborative design of physical circuitry that is

Beyond Blocks and Texts in Programming

20

synchronously mapped to real-time virtual interaction. One major limitation of
tangible blocks is that learners are restricted by the finite set of physical blocks.
For this limitation, a workable solution in the literature was demonstrated in the
design of Creative Hybrid Environment for Robotics Programming (CHERP).
CHERP compensates for the limited number of physical blocks by creating a
hybrid of block-based and tangible environments (Bers et al., 2014).

Icon-based environments (n = 5, 5%) are appropriate when the target users
have limited reading/writing ability (Pasternak et al., 2017). Autothinking
(Hooshyar et al., 2021), Microsoft Kodu (Fokides, 2017), EmpiricaControl
(Lavonen et al., 2003) and Bomberbot (Fanchamps et al., 2021) were charted in
the icon-based category. For example, in Bomberbot, learners programmatically
control virtual robots through interlocking pictorial commands (e.g., forward,
jump, repeat, if/then). Although the use of pictures as programming commands
may be fascinating for younger children (e.g., kindergarteners), the meaning of
pictorial commands may be difficult to interpret (Pasternak et al., 2017). Implicitly,
icon-based environments have limited functionality and increasing the number of
pictorial commands may not scale. Except for EmpiricaControl, the limited func-
tionality constrained the icon-based environments to gameplay activities
(Fanchamps et al., 2021; Fokides, 2017; Hooshyar et al., 2021).

Block-based environments (n = 45; 41%) were twice the number of studies
that adopted text-based programming environments (n = 22; 20%). This substan-
tial difference is consistent with the perception of block-based environments as
easy programming environments. For instance, Okita (2014) compared the influ-
ence of using Lego NXT-G (block-based) or RobotC (text-based) as an introduc-
tory programming environment. In Lego NXT-G, “icon of a standing robot with
an appended 5sec” represents a command for the robot to wait for 5 seconds. An
equivalent command in RobotC is “wait1Msec(5000).” According to Okita
(2014), Lego NXT-G has high transparency and supported students in creating
mental connections between the Lego NXT-G blocks and the robot’s behavior
easily. Similarly, most of the articles that compared programming environments,
as illustrated above, are consistent with the anecdotal belief that text-based envi-
ronments impose higher cognitive overheads for learners than block-based
environments.

Hybrid environments include Learn Block (Bachiller-Burgos et al., 2020),
Java Bridge Tool (Tóth & Lovászová, 2021), Flip (Howland & Good, 2015),
and Pencil Code (Weintrop & Wilensky, 2017, 2019). Java Bridge Tool medi-
ates transfer from App Inventor (block-based environment) to Java (text-based
language) by creating a direct mapping in the same window, which extends
the functionality of apps by linking App Inventor to full Java libraries. Flip
supports the dual input modes and, interestingly, generates the natural lan-
guage translation of the program as a third language synchronously. According
to Howland and Good (2015), the humanistic factor of the natural language
made Flip an effective programming environment. Generally, by combining
the two input modes, hybrid environments attempt to mitigate the limited
functionality of block-based environments without sacrificing their transpar-
ency and ease of use.

21

Output Interface

Excluding studies that did not identify the form of output interface (n = 42;
38%), a significant portion of the articles (n = 37; 33%) adopted programming
environments that rendered outputs in the form of visuals, through activities such
as games and interactive stories. Scratch (Gao & Hew, 2022), Autothinking
(Hooshyar et al., 2021), CodeCombat (Kroustalli & Xinogalos, 2021), and
Bomberbot (Fanchamps et al., 2021) provide but a few examples of visual render-
ing. In Bomberbot, when the visual operation of the programmable robot is differ-
ent from the constructed codes, the environment provides tailored feedback
quickly.

3D output interface is a special form of visual rendering. Unlike visual render-
ing in two-dimensional space, 3D enhances visualization by creating naturalistic
engagement. According to Félix et al. (2020), the essence of 3D output lies in
creating an immersive experience for both the game design and the gameplay.
Microsoft Kodu, a 3D game-creation environment with cartoonish objects and
characters, was designed to promote engagement (Fokides, 2017). Other forms of
3D engagement include the gamification and emotion-recognition add-on fea-
tures in EasyLogic3D (Félix et al., 2020). High school students who used OpenSim
with S4SL, a 3D visual platform, significantly improved their problem-solving
and algorithmic design in comparison with peers who programmed in Scratch, a
two-dimensional visual environment (Pellas & Vosinakis, 2018).

Text output interface renders the results of the programs as strings on the con-
sole (sometimes referred to as shell or terminal). Programming environments with
outputs in this category often have commands for accepting and displaying the
textual output and are predominantly conventional programming languages. For
example, Java’s textual output was harnessed in comparing the influence of block-
based and text-based languages (Weintrop & Wilensky, 2017) and transitioning
from block-based to text-based programming (Weintrop & Wilensky, 2019).
Nonetheless, most conventional languages, such as Java and Python, also have
libraries for creating rich graphical and visual outputs.

Hardware control requires physical/tangible objects including robots, toys, or
electronic boards to enact their program. Examples include Arduino (Zhong & Li,
2020), Phogo (Molins-Ruano et al., 2018), and Lego (Okita, 2014). Audio and
virtual reality output interfaces, although less popular, are insightful approaches
to performing the codes in a computer program. For instance, Torino, a tangible
and tactile-enabled block that outputs sound, was a suitable output interface for
learners with mixed visual abilities (Morrison et al., 2021). With VR-OCKS, for
example, students are immersed in a virtual, 3D environment and program by
organizing floating action blocks as code to solve puzzles (Segura et al., 2020).

Deployable programming environments create distributable packages that can
be deployed on other platforms. Although this overlaps with other output formats,
such as visuals and 3D, the ability to deploy programs across platforms serves as
extra motivation for learners. For example, Seralidou and Douligeris (2019) found
that students accepted App Inventor, a block-based input programming environ-
ment for designing android apps, which can be deployed to reach wider audience on
mobile phones and tablets seamlessly. Most conventional languages offer similar

Beyond Blocks and Texts in Programming

22

support. Since deployable environments support learners to design programs that
engender social interactions and are commercializable, future research may investi-
gate whether such motivation could influence both learning and disposition toward
programming.

Programming Project Type

Game design environments (n = 15, 14%) provide platforms for learners to
both create and play games. This category is aptly captured in Weintrop and
Wilensky’s (2014) description of RoboBuilder and similar environments as “pro-
gram-to-play” platforms. Other environments that support game design activities
include Scratch (Maloney et al., 2010), Microsoft Kodu (Fokides, 2017),
AgentSheets and AgentCubes (Leonard et al., 2016), Alice (Hartl et al., 2015),
and NetsBlox (Broll et al., 2018). These environments are designed to support
parallel execution of codes to create synchronous effects of the game elements. In
NetsBlox, parallelism is implemented across distributed computers.

Gameplay environments (n = 10, 9%) support students to code solutions for
predetermined problems in the form of playing games. Studies showed that stu-
dents’ programming achievement (Yallihep & Kutlu, 2020) and learning attitude
(Hooshyar et al., 2021) improved in gameplay environments. However, game-
play environments such as CodeCombat (Kroustalli & Xinogalos, 2021), LightBot
(Yallihep & Kutlu, 2020), and Autothinking (Hooshyar et al., 2021) do not offer
the flexibility of game creation. Plausible impacts of this limitation may include
boredom when successive game levels are repetitive, less motivation when access
to higher levels is hard, and limited exposure to advanced programming concepts.
Therefore, more research is needed to understand the impact of gameplay envi-
ronment as an introductory programming environment, as well as the long-term
impact on programming.

Animation and digital story creation represent other genres of projects that
may be well fitted in certain environments, such as Scratch (Maloney et al., 2010)
and Alice (Denner et al., 2014). The meaning of animation varies both within and
between environments. In Scratch, it ranges from simple codes that render ani-
mated effects of a sequence of images and extends to complex codes that tell
stories, simulate science projects, and create tutorials (Maloney et al., 2010).
Animation and simulations are sometimes used interchangeably to describe the
nature of activities that are supported in programming environments. In this
review, simulation refers to activities that use tangible objects such as Dash
robotic path tracing by students with intellectual disabilities (Taylor, 2018), and
controlling LEDs, sensors, and buttons with Arduino (Zhong & Li, 2020).

Music composition and Mathematical representation are other types of proj-
ects that programming environments may specifically support. For instance,
Taylor and Baek (2019) selected the Lego Mindstorms EV3 for its affordance in
creating musical notes and tones. EarSketch was designed for computational
music remixing with Python (Magerko et al., 2016). In Mathematical representa-
tion of word problems, Rodríguez-Martínez et al. (2020) explored the effect of
learning to represent the least common multiple (LCM) and greatest common
divisor (GCD) as part of word problems in Scratch. More studies are needed to
demonstrate how features of programming environments augment learning of dis-
ciplinary topics across sciences and arts.

Ezeamuzie and Ezeamuzie

23

Since environments may support different types of programming activities
(e.g., game design, animation, modeling scientific concepts), the affordance of an
environment should be clear and aligned with the programming tasks. For exam-
ple, Erümit (2020) investigated students’ programming experience in Scratch
when engaged in three different activities: game design, arithmetic, and animation
creation. Findings suggest that game design activities expose students to richer
experiences than arithmetic and animation. This shows that the intrinsic nature of
programming tasks may engender different experiences in an environment.

Sometimes, the nature of tasks that are supported in some environments may
not be well-defined. For instance, Seralidou and Douligeris (2019) described App
Inventor as a platform for building apps for smartphones and tablets. However,
what constitutes an app may be unclear and hides certain affordances of the plat-
form, including support for designing games, animation, interactive user inter-
faces, and databases. Also, mapping environments to certain activities may not
reveal the complexities of projects. Maloney et al. (2010) described Scratch as a
platform for creating interactive and media-rich projects, encompassing activities
such as games, simulations, science projects, animated stories, and music/video
projects. However, the creation of music in Scratch involves playing a recorded
sound. This approach differs from that of environments such as EarSketch, in
which music composition is implemented through computational remixing
(Magerko et al., 2016).

Limitations and Future Research

Although the significant role played by programming environments in learning
has been established, the paucity of understanding about their conceptual framing
is clear in the literature. To make programming education more permeable to the
growing number of educators who are tasked with teaching programming in
K–12, this study systematically synthesized the features of programming environ-
ments from existing studies, reported practices related to eight dimensions that
could influence the choice of learning platforms, and highlighted clear gaps and
inconsistencies that should be addressed by future authors.

To describe the contributions of this study to knowledge and practices, it is
important to acknowledge its limitations. First, with the systematic approach of
this review, which involved a keyword search and referential backtracking, it is not
possible to claim total coverage. In addition, some eligible documents might have
been omitted in the screening process, especially in the abstract screening by a
coder. Focusing on K–12 studies inevitably excluded studies in higher education.
Although the decision to impose this limitation was guided by the goal of under-
standing the unique context of the K–12 experience, insightful studies about pro-
gramming environments in higher education may have been omitted. Moreover,
analyzing only peer-reviewed articles—although it was deemed necessary to miti-
gate the varied quality of grey literature—excluded some insightful pieces.

Despite these limitations, this study unearths a valuable framework that concep-
tualizes programming environments in K–12 and how the dimensions of such
environments may influence learning. The dimensions explored in this study relate
to the environments’ connectivity mode, the natural language of the interface, lan-
guage inheritance, age/grade level appropriateness, influence of cost and subscrip-
tion, output interface, input interface, and compatibility with various project types.

Beyond Blocks and Texts in Programming

24

Given the possible bias that researchers’ theoretical perspectives may induce, it
is important to highlight key issues of validity. Certain specific programming envi-
ronments were described as illustrations of the dimensions uncovered to make
these features more relatable to readers. The authors of this article have no affilia-
tion with any of the developers and have no intention of promoting any specific
platform. Future work could verify the alignment between dimensions that emerged
from the data and the actual programming environments, and examine how the
choice of environments based on the dimensions could affect students’ program-
ming learning experience. Developers of programming environments need to elab-
orate on how the environment can support learning in these dimensions. More so,
empirical investigations are required to verify how the design choices of program-
ming environments support the dimensions, such as age-appropriateness.

The aim of this investigation was neither to compare nor evaluate the relative
merits of specific environments. Although this study does provide dimensions to
be used by educators in comparing the affordances of programming environ-
ments, its main goal was to raise awareness of the need for educators to carefully
consider how a given programming environment aligns with their students’ learn-
ing. This may lead to a sort of “chicken and egg” problem of choosing where to
start between teaching objectives and programming platforms. Basing a decision
on the learning objectives is a valid path from a learning and instructional design
perspective. However, educators must be prepared to acknowledge instances
where realizing the learning objectives within a suitable environment may be
overly complex for the target users, causing more problems than it solves.

Acknowledgments

We thank Jessica S.C. Leung for her invaluable feedback on the research design and
draft.

ORCID iD

Ndudi Okechukwu Ezeamuzie https://orcid.org/0000-0001-8946-5709

References

Almanie, T., Alqahtani, S., Almuhanna, A., Almokali, S., Guediri, S., & Alsofayan, R.
(2019). Let’s Code: A kid-friendly interactive application designed to teach arabic-
speaking children text-based programming. International Journal of Advanced
Computer Science & Applications, 10(7), 413–418. https://doi.org/10.14569/
IJACSA.2019.0100757

Angeli, C., & Valanides, N. (2019). Developing young childrenʼs computational think-
ing with educational robotics: An interaction effect between gender and scaffolding
strategy. Computers in Human Behavior, 105, Article 105954. https://doi.
org/10.1016/j.chb.2019.03.018

Bachiller-Burgos, P., Barbecho, I., Calderita, L. V., Bustos, P., & Manso, L. J. (2020).
LearnBlock: A robot-agnostic educational programming tool. IEEE Access, 8,
30012–30026. https://doi.org/10.1109/ACCESS.2020.2972410

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational think-
ing and tinkering: Exploration of an early childhood robotics curriculum. Computers
& Education, 72(C), 145–157. https://doi.org/10.1016/j.compedu.2013.10.020

https://orcid.org/0000-0001-8946-5709
https://doi.org/10.14569/IJACSA.2019.0100757
https://doi.org/10.14569/IJACSA.2019.0100757
https://doi.org/10.1016/j.chb.2019.03.018
https://doi.org/10.1016/j.chb.2019.03.018
https://doi.org/10.1109/ACCESS.2020.2972410
https://doi.org/10.1016/j.compedu.2013.10.020

Ezeamuzie and Ezeamuzie

25

Bers, M., Seddighin, S., & Sullivan, A. (2013). Ready for robotics: Bringing together the
T and E of STEM in early childhood teacher education. Journal of Technology and
Teacher Education, 21(3), 355–377. https://www.learntechlib.org/primary/p/41987/

Blockly. (n.d.). A JavaScript library for building visual programming editors. https://
developers.google.com/blockly

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. In Proceedings of the 2012 Annual Meeting
of the American Educational Research Association (Vol. 1, pp. 1–25). http://
scratched.gse.harvard.edu/ct/files/AERA2012.pdf

Broll, B., Lédeczi, Á., Zare, H., Do, D. N., Sallai, J., Völgyesi, P., Maróti, M., Brown,
L., & Vanags, C. (2018). A visual programming environment for introducing distrib-
uted computing to secondary education. Journal of Parallel and Distributed
Computing, 118, 189–200. https://doi.org/10.1016/j.jpdc.2018.02.021

Costa, J. M., & Miranda, G. L. (2017). Relation between Alice software and program-
ming learning: A systematic review of the literature and meta-analysis. British
Journal of Educational Technology, 48(6), 1464–1474. https://doi.org/10.1111/
bjet.12496

Deng, W., Pi, Z., Lei, W., Zhou, Q., & Zhang, W. (2020). Pencil Code improves learnersʼ
computational thinking and computer learning attitude. Computer Applications in
Engineering Education, 28(1), 90–104. https://doi.org/10.1002/cae.22177

Denner, J., Campe, S., & Werner, L. (2019). Does computer game design and program-
ming benefit children? A meta-synthesis of research. ACM Transactions on
Computing Education, 19(3), 1–35. https://doi.org/10.1145/3277565

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming: Under what
conditions is it advantageous for middle school students? Journal of Research on
Technology in Education, 46(3), 277–296. https://doi.org/10.1080/15391523.2014.
888272

Denning, P. J. (1989). A debate on teaching computing science. Communications of the
ACM, 32(12), 1397–1414. https://doi.org/10.1145/76380.76381

Dijkstra, E. W. (1989). On the cruelty of really teaching computing science.
Communications of the ACM, 32(12), 1398–1404. https://doi.org/10.1145/76380.76381

Efecan, C. F., Sendag, S., & Gedik, N. (2021). Pioneers on the case for promoting
motivation to teach text-based programming. Journal of Educational Computing
Research, 59(3), 453–469. https://doi.org/10.1177/0735633120966048

Erol, O., & Çırak, N. S. (2022). The effect of a programming tool scratch on the prob-
lem-solving skills of middle school students. Education and Information
Technologies, 27(3), 4065–4086. https://doi.org/10.1007/s10639-021-10776-w

Erümit, A. K. (2020). Effects of different teaching approaches on programming skills.
Education and Information Technologies, 25(2), 1013–1037. https://doi.org/10.1007/
s10639-019-10010-8

Ezeamuzie, N. O. (2023). Project-first approach to programming in K–12: Tracking the
development of novice programmers in technology-deprived environments.
Education and Information Technologies, 28(1), 407–437. https://doi.org/https://
doi.org/10.1007/s10639-022-11180-8

Ezeamuzie, N. O., & Leung, J. S. C. (2022). Computational thinking through an empir-
ical lens: A systematic review of literature. Journal of Educational Computing
Research, 60(2), 481–511. https://doi.org/10.1177/07356331211033158

Fanchamps, N. L. J.A., Slangen, L., Specht, M., & Hennissen, P. (2021). The impact
of SRA-programming on computational thinking in a visual oriented programming

https://www.learntechlib.org/primary/p/41987/
https://developers.google.com/blockly
https://developers.google.com/blockly
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
https://doi.org/10.1016/j.jpdc.2018.02.021
https://doi.org/10.1111/bjet.12496
https://doi.org/10.1111/bjet.12496
https://doi.org/10.1002/cae.22177
https://doi.org/10.1145/3277565
https://doi.org/10.1080/15391523.2014.888272
https://doi.org/10.1080/15391523.2014.888272
https://doi.org/10.1145/76380.76381
https://doi.org/10.1145/76380.76381
https://doi.org/10.1177/0735633120966048
https://doi.org/10.1007/s10639-021-10776-w
https://doi.org/10.1007/s10639-019-10010-8
https://doi.org/10.1007/s10639-019-10010-8
https://doi.org/https://doi.org/10.1007/s10639-022-11180-8
https://doi.org/https://doi.org/10.1007/s10639-022-11180-8
https://doi.org/10.1177/07356331211033158

Beyond Blocks and Texts in Programming

26

environment. Education and Information Technologies, 26(5), 6479–6498. https://
doi.org/10.1007/s10639-021-10578-0

Félix, J. M.R., Zatarain Cabada, R., & Barrón Estrada, M. L. (2020). Teaching compu-
tational thinking in Mexico: A case study in a public elementary school. Education
and Information Technologies, 25(6), 5087–5101. https://doi.org/10.1007/s10639-
020-10213-4

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M.
(2013). Designing ScratchJr: support for early childhood learning through computer
programming. In J. P. Hourcade, N. Sawhney, & E. Reardon (Eds.), Proceedings of
the 12th International Conference on Interaction Design and Children (pp. 1–10).
Association for Computing Machinery. https://doi.org/10.1145/2485760.2485785

Fokides, E. (2017). Students learning to program by developing games: Results of a
year-long project in primary school settings. Journal of Information Technology
Education: Research, 16, 475–505. https://doi.org/10.28945/3893

Gao, X., & Hew, K. F. (2022). Toward a 5E-based flipped classroom model for teach-
ing computational thinking in elementary school: Effects on student computational
thinking and problem-solving performance. Journal of Educational Computing
Research, 60(2), 512–543. https://doi.org/10.1177/07356331211037757

Gómez-Albarrán, M. (2005). The teaching and learning of programming: A survey of
supporting software tools. Computer Journal, 48(2), 130–144. https://doi.
org/10.1093/comjnl/bxh080

González-González, C. S., Herrera-González, E., Moreno-Ruiz, L., Reyes-Alonso, N.,
Hernández-Morales, S., Guzmán-Franco, M. D., & Infante-Moro, A. (2019).
Computational thinking and Down syndrome: An exploratory study using the Kibo
robot. Informatics, 6(2), 25. https://doi.org/10.3390/informatics6020025

Google. (n.d.). Welcome to Colaboratory. https://colab.research.google.com
Grizioti, M., & Kynigos, C. (2021). Code the mime: A 3D programmable charades

game for computational thinking in MaLT2. British Journal of Educational
Technology, 52(3), 1004–1023. https://doi.org/10.1111/bjet.13085

Hadad, S., Shamir-Inbal, T., Blau, I., & Leykin, E. (2021). Professional development
of code and robotics teachers through small private online course (SPOC): Teacher
centrality and pedagogical strategies for developing computational thinking of stu-
dents. Journal of Educational Computing Research, 59(4), 763–791. https://doi.
org/10.1177/0735633120973432

Hartl, A. C., DeLay, D., Laursen, B., Denner, J., Werner, L., Campe, S., & Ortiz, E.
(2015). Dyadic instruction for middle school students: Liking promotes learning.
Learning and Individual Differences, 44, 33–39. https://doi.org/10.1016/j.lin-
dif.2015.11.002

Hooshyar, D., Pedaste, M., Yang, Y., Malva, L., Hwang, G.-J., Wang, M., Lim, H., &
Delev, D. (2021). From gaming to computational thinking: An adaptive educational
computer game-based learning approach. Journal of Educational Computing
Research, 59(3), 383–409. https://doi.org/10.1177/0735633120965919

Howland, K., & Good, J. (2015). Learning to communicate computationally with Flip:
A bi-modal programming language for game creation. Computers & Education, 80,
224–240. https://doi.org/10.1016/j.compedu.2014.08.014

Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach com-
putational thinking: Suggestions based on a review of the literature. Computers &
Education, 126, 296–310. https://doi.org/10.1016/j.compedu.2018.07.004

https://doi.org/10.1007/s10639-021-10578-0
https://doi.org/10.1007/s10639-021-10578-0
https://doi.org/10.1007/s10639-020-10213-4
https://doi.org/10.1007/s10639-020-10213-4
https://doi.org/10.1145/2485760.2485785
https://doi.org/10.28945/3893
https://doi.org/10.1177/07356331211037757
https://doi.org/10.1093/comjnl/bxh080
https://doi.org/10.1093/comjnl/bxh080
https://doi.org/10.3390/informatics6020025
https://colab.research.google.com
https://doi.org/10.1111/bjet.13085
https://doi.org/10.1177/0735633120973432
https://doi.org/10.1177/0735633120973432
https://doi.org/10.1016/j.lindif.2015.11.002
https://doi.org/10.1016/j.lindif.2015.11.002
https://doi.org/10.1177/0735633120965919
https://doi.org/10.1016/j.compedu.2014.08.014
https://doi.org/10.1016/j.compedu.2018.07.004

Ezeamuzie and Ezeamuzie

27

Hu, Y., Chen, C.-H., & Su, C.-Y. (2020). Exploring the effectiveness and moderators
of block-based visual programming on student learning: A meta-analysis. Journal of
Educational Computing Research, 58(8), 1467–1493. https://doi.org/10.1177/07
35633120945935

Iskrenovic-Momcilovic, O. (2019). Pair programming with scratch. Education and
Information Technologies, 24(5), 2943–2952. https://doi.org/10.1007/s10639-019-
09905-3

João, P., Nuno, D., Fábio, S. F., & Ana, P. (2019). A cross-analysis of block-based and
visual programming apps with computer science student-teachers. Education
Sciences, 9(3), 181. https://doi.org/10.3390/educsci9030181

Kanaki, K., & Kalogiannakis, M. (2018). Introducing fundamental object-oriented pro-
gramming concepts in preschool education within the context of physical science
courses. Education and Information Technologies, 23(6), 2673–2698. https://doi.
org/10.1007/s10639-018-9736-0

Katterfeldt, E.-S., Cukurova, M., Spikol, D., & Cuartielles, D. (2018). Physical com-
puting with plug-and-play toolkits: Key recommendations for collaborative learning
implementations. International Journal of Child–Computer Interaction, 17, 72–82.
https://doi.org/10.1016/j.ijcci.2018.03.002

Katz, V. S., Gonzalez, C., & Clark, K. (2017). Digital inequality and developmental
trajectories of low-income, immigrant, and minority children. Pediatrics, 140(Suppl.
2), S132–S136. https://doi.org/10.1542/peds.2016-1758R

Kim, B., Kim, T., & Kim, J. (2013). Paper-and-pencil programming strategy toward
computational thinking for non-majors: Design your solution. Journal of Educational
Computing Research, 49(4), 437–459. https://doi.org/10.2190/EC.49.4.b

Kölling, M. (2016). Educational programming on the Raspberry Pi. Electronics, 5(3),
Article 33. https://doi.org/10.3390/electronics5030033

Kong, S.-C., Lai, M., & Sun, D. (2020). Teacher development in computational think-
ing: Design and learning outcomes of programming concepts, practices and peda-
gogy. Computers & Education, 151, Article 103872. https://doi.org/10.1016/j.
compedu.2020.103872

Kraleva, R., Kralev, V., & Kostadinova, D. (2019). A methodology for the analysis of
block-based programming languages appropriate for children. Journal of Computing
Science and Engineering, 13(1), 1–10. https://doi.org/10.5626/JCSE.2019.13.1.1

Kroustalli, C., & Xinogalos, S. (2021). Studying the effects of teaching programming
to lower secondary school students with a serious game: A case study with Python
and CodeCombat. Education and Information Technologies, 26(5), 6069–6095.
https://doi.org/10.1007/s10639-021-10596-y

Kuhail, M. A., Farooq, S., Hammad, R., & Bahja, M. (2021). Characterizing visual
programming approaches for end-user developers: A systematic review. IEEE
Access, 9, 14181–14202. https://doi.org/10.1109/ACCESS.2021.3051043

Lau, W. W. F., & Yuen, A. H. K. (2011). The impact of the medium of instruction: The
case of teaching and learning of computer programming. Education and Information
Technologies, 16(2), 183–201. https://doi.org/10.1007/s10639-009-9118-8

Lavonen, J. M., Meisalo, V. P., Lattu, M., & Sutinen, E. (2003). Concretising the pro-
gramming task: A case study in a secondary school. Computers & Education, 40(2),
115–135. https://doi.org/10.1016/S0360-1315(02)00101-X

Leonard, J., Buss, A., Gamboa, R., Mitchell, M., Fashola, O., Hubert, T., & Almughyirah,
S. (2016). Using robotics and game design to enhance children’s self-efficacy,

https://doi.org/10.1177/0735633120945935
https://doi.org/10.1177/0735633120945935
https://doi.org/10.1007/s10639-019-09905-3
https://doi.org/10.1007/s10639-019-09905-3
https://doi.org/10.3390/educsci9030181
https://doi.org/10.1007/s10639-018-9736-0
https://doi.org/10.1007/s10639-018-9736-0
https://doi.org/10.1016/j.ijcci.2018.03.002
https://doi.org/10.1542/peds.2016-1758R
https://doi.org/10.2190/EC.49.4.b
https://doi.org/10.3390/electronics5030033
https://doi.org/10.1016/j.compedu.2020.103872
https://doi.org/10.1016/j.compedu.2020.103872
https://doi.org/10.5626/JCSE.2019.13.1.1
https://doi.org/10.1007/s10639-021-10596-y
https://doi.org/10.1109/ACCESS.2021.3051043
https://doi.org/10.1007/s10639-009-9118-8
https://doi.org/10.1016/S0360-1315(02)00101-X

Beyond Blocks and Texts in Programming

28

STEM attitudes, and computational thinking skills. Journal of Science Education
and Technology, 25(6), 860–876. https://doi.org/10.1007/s10956-016-9628-2

Liu, A. S., Schunn, C. D., Flot, J., & Shoop, R. (2013). The role of physicality in rich
programming environments. Computer Science Education, 23(4), 315–331. https://
doi.org/10.1080/08993408.2013.847165

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N.,
Ott, L., Paterson, J., Scott, M. J., Sheard, J., & Szabo, C. (2018). Introductory pro-
gramming: A systematic literature review. In G. Rößling & B. Scharlau (Eds.), 23rd
Annual ACM Conference on Innovation and Technology in Computer Science
Education (pp. 55–106). ACM. https://doi.org/10.1145/3293881.3295779

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational
thinking through programming: What is next for K–12? Computers in Human
Behavior, 41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012

Macrides, E., Miliou, O., & Angeli, C. (2022). Programming in early childhood educa-
tion: A systematic review. International Journal of Child–Computer Interaction, 32,
Article 100396. https://doi.org/10.1016/j.ijcci.2021.100396

Magerko, B., Freeman, J., Mcklin, T., Reilly, M., Livingston, E., Mccoid, S., & Crews-
Brown, A. (2016). EarSketch: A steam-based approach for underrepresented popula-
tions in high school computer science education. ACM Transactions on Computing
Education, 16(4), Article 14. https://doi.org/10.1145/2886418

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch
programming language and environment. ACM Transactions on Computing
Education, 10(4), Article 16. https://doi.org/10.1145/1868358.1868363

Matere, I. M., Weng, C., Astatke, M., Hsia, C.-H., & Fan, C.-G. (2023). Effect of
design-based learning on elementary studentsʼ computational thinking skills in
visual programming maker course. Interactive Learning Environments, 31(6),
3633–3646. https://doi.org/10.1080/10494820.2021.1938612

Molins-Ruano, P., Gonzalez-Sacristan, C., & Garcia-Saura, C. (2018). Phogo: A low
cost, free and “maker” revisit to Logo. Computers in Human Behavior, 80, 428–440.
https://doi.org/10.1016/j.chb.2017.09.029

Morales-Urrutia, E. K., Ocaña, J. M., Pérez-Marín, D., & Pizarro, C. (2021). Can
mindfulness help primary education students to learn how to program with an emo-
tional learning companion? IEEE Access, 9, 6642–6660. https://doi.org/10.1109/
ACCESS.2021.3049187

Morrison, C., Villar, N., Hadwen-Bennett, A., Regan, T., Cletheroe, D., Thieme, A., &
Sentance, S. (2021). Physical programming for blind and low vision children at
scale. Human–Computer Interaction, 36(5–6), 535–569. https://doi.org/10.1080/07
370024.2019.1621175

Navarrete, C. C. (2013). Creative thinking in digital game design and development: A
case study. Computers & Education, 69, 320–331. https://doi.org/10.1016/j.
compedu.2013.07.025

Okita, S. Y. (2014). The relative merits of transparency: Investigating situations that
support the use of robotics in developing student learning adaptability across virtual
and physical computing platforms. British Journal of Educational Technology,
45(5), 844–862. https://doi.org/10.1111/bjet.12101

Palumbo, D. B. (1990). Programming language/problem-solving research: A review of
relevant issues. Review of Educational Research, 60(1), 65–89. https://doi.
org/10.3102/00346543060001065

https://doi.org/10.1007/s10956-016-9628-2
https://doi.org/10.1080/08993408.2013.847165
https://doi.org/10.1080/08993408.2013.847165
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1016/j.ijcci.2021.100396
https://doi.org/10.1145/2886418
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1080/10494820.2021.1938612
https://doi.org/10.1016/j.chb.2017.09.029
https://doi.org/10.1109/ACCESS.2021.3049187
https://doi.org/10.1109/ACCESS.2021.3049187
https://doi.org/10.1080/07370024.2019.1621175
https://doi.org/10.1080/07370024.2019.1621175
https://doi.org/10.1016/j.compedu.2013.07.025
https://doi.org/10.1016/j.compedu.2013.07.025
https://doi.org/10.1111/bjet.12101
https://doi.org/10.3102/00346543060001065
https://doi.org/10.3102/00346543060001065

Ezeamuzie and Ezeamuzie

29

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
Pasternak, E., Fenichel, R., & Marshall, A. N. (2017). Tips for creating a block lan-

guage with Blockly. In F. Turbak, J. Gray, C. Kelleher, & M. Sherman (Eds.), 2017
IEEE Blocks and Beyond Workshop (pp. 21–24). https://doi.org/10.1109/
BLOCKS.2017.8120404

Pellas, N., & Vosinakis, S. (2018). The effect of simulation games on learning com-
puter programming: A comparative study on high school students’ learning perfor-
mance by assessing computational problem-solving strategies. Education and
Information Technologies, 23(6), 2423–2452. https://doi.org/10.1007/s10639-018-
9724-4

Popat, S., & Starkey, L. (2019). Learning to code or coding to learn? A systematic
review. Computers & Education, 128, 365–376. https://doi.org/10.1016/j.
compedu.2018.10.005

Raspberry Pi Foundation. (n.d.). About us. https://www.raspberrypi.org/about/
Relkin, E., de Ruiter, L. E., & Bers, M. U. (2021). Learning to code and the acquisition

of computational thinking by young children. Computers & Education, 169, Article
104222. https://doi.org/https://doi.org/10.1016/j.compedu.2021.104222

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the devel-
opment of a checklist for getting computational thinking into public schools. In G.
Lewandowski, S. Wolfman, T. J. Cortina, & E. L. Walker (Eds.), Proceedings of the
41st ACM Technical Symposium on Computer Science Education (pp. 265–269).
ACM. https://doi.org/10.1145/1734263.1734357

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan,
K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch:
Programming for all. Communications of the ACM, 52(11), 60–67. https://doi.
org/10.1145/1592761.1592779

Rodríguez-Martínez, J. A., González-Calero, J. A., & Sáez-López, J. M. (2020).
Computational thinking and mathematics using Scratch: An experiment with sixth-
grade students. Interactive Learning Environments, 28(3), 316–327. https://doi.org/
10.1080/10494820.2019.1612448

Sáez-López, J.-M., Román-González, M., & Vázquez-Cano, E. (2016). Visual pro-
gramming languages integrated across the curriculum in elementary school: A two
year case study using “Scratch” in five schools. Computers & Education, 97, 129–
141. https://doi.org/10.1016/j.compedu.2016.03.003

Saldaña, J. (2016). The coding manual for qualitative researchers (3rd ed.). SAGE.
Scherer, R., Siddiq, F., & Viveros, B. S. (2019). The cognitive benefits of learning

computer programming: A meta-analysis of transfer effects. Journal of Educational
Psychology, 111(5), 764–792. https://doi.org/10.1037/edu0000314

Scherer, R., Siddiq, F., & Viveros, B. S. (2020). A meta-analysis of teaching and learn-
ing computer programming: Effective instructional approaches and conditions.
Computers in Human Behavior, 109, Article 106349. https://doi.org/10.1016/j.
chb.2020.106349

Segura, R. J., del Pino, F. J., Ogáyar, C. J., & Rueda, A. J. (2020). VR-OCKS: A virtual
reality game for learning the basic concepts of programming. Computer Applications
in Engineering Education, 28(1), 31–41. https://doi.org/10.1002/cae.22172

Sentance, S., Waite, J., & Kallia, M. (2019). Teaching computer programming with
PRIMM: A sociocultural perspective. Computer Science Education, 29(2–3), 136–
176. https://doi.org/10.1080/08993408.2019.1608781

https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1007/s10639-018-9724-4
https://doi.org/10.1007/s10639-018-9724-4
https://doi.org/10.1016/j.compedu.2018.10.005
https://doi.org/10.1016/j.compedu.2018.10.005
https://www.raspberrypi.org/about/
https://doi.org/https://doi.org/10.1016/j.compedu.2021.104222
https://doi.org/10.1145/1734263.1734357
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1080/10494820.2019.1612448
https://doi.org/10.1080/10494820.2019.1612448
https://doi.org/10.1016/j.compedu.2016.03.003
https://doi.org/10.1037/edu0000314
https://doi.org/10.1016/j.chb.2020.106349
https://doi.org/10.1016/j.chb.2020.106349
https://doi.org/10.1002/cae.22172
https://doi.org/10.1080/08993408.2019.1608781

Beyond Blocks and Texts in Programming

30

Seralidou, E., & Douligeris, C. (2019). Learning with the AppInventor programming
software through the use of structured educational scenarios in secondary education
in Greece. Education and Information Technologies, 24(4), 2243–2281. https://doi.
org/10.1007/s10639-019-09866-7

Serrano Pérez, E., & Juárez López, F. (2019). An ultra-low cost line follower robot as
educational tool for teaching programming and circuitʼs foundations. Computer
Applications in Engineering Education, 27(2), 288–302. https://doi.org/10.1002/
cae.22074

Soloway, E. (1986). Learning to program = learning to construct mechanisms and
explanations. Communications of the ACM, 29(9), 850–858. https://doi.
org/10.1145/6592.6594

Spector, J. M. (2005). Innovations in instructional technology: An introduction to this
volume. In J. M. Spector, C. Ohrazda, A. Van Schaack, & D. A. Wiley (Eds.),
Innovations in instructional technology: Essays in honor of M. David Merrill (pp.
xxxi–xxxvi). Erlbaum.

Strawhacker, A., & Bers, M. U. (2015). “I want my robot to look for food”: Comparing
kindergartner’s programming comprehension using tangible, graphic, and hybrid
user interfaces. International Journal of Technology and Design Education, 25(3),
293–319. https://doi.org/10.1007/s10798-014-9287-7

Strawhacker, A., Lee, M., & Bers, M. U. (2018). Teaching tools, teachers’ rules:
Exploring the impact of teaching styles on young children’s programming knowl-
edge in ScratchJr. International Journal of Technology and Design Education, 28(2),
347–376. https://doi.org/10.1007/s10798-017-9400-9

Sullivan, A., & Bers, M. U. (2016). Robotics in the early childhood classroom:
Learning outcomes from an 8-week robotics curriculum in pre-kindergarten through
second grade. International Journal of Technology and Design Education, 26(1),
3–20. https://doi.org/10.1007/s10798-015-9304-5

Sullivan, A., & Bers, M. U. (2019). Investigating the use of robotics to increase girls’
interest in engineering during early elementary school. International Journal of
Technology and Design Education, 29(5), 1033–1051. https://doi.org/10.1007/
s10798-018-9483-y

Sun, J. C.-Y., & Hsu, K. Y.-C. (2019). A smart eye-tracking feedback scaffolding
approach to improving students' learning self-efficacy and performance in a C pro-
gramming course. Computers in Human Behavior, 95, 66–72. https://doi.
org/10.1016/j.chb.2019.01.036

Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W.C. (1998). Cognitive architecture
and instructional design. Educational Psychology Review, 10(3), 251–296. https://
doi.org/10.1023/A:1022193728205

Taylor, M. S. (2018). Computer programming with pre-k through first-grade students
with intellectual disabilities. Journal of Special Education, 52(2), 78–88. https://doi.
org/10.1177/0022466918761120

Taylor, K., & Baek, Y. (2019). Grouping matters in computational robotic activities.
Computers in Human Behavior, 93, 99–105. https://doi.org/10.1016/j.chb.2018.12.010

Tóth, T., & Lovászová, G. (2021). Mediation of knowledge transfer in the transition
from visual to textual programming. Informatics in Education, 20(3), 489–511.
https://doi.org/10.15388/infedu.2021.20

Unal, A., & Topu, F. B. (2021). Effects of teaching a computer programming language
via hybrid interface on anxiety, cognitive load level and achievement of high school
students. Education and Information Technologies, 26(5), 5291–5309. https://doi.
org/10.1007/s10639-021-10536-w

https://doi.org/10.1007/s10639-019-09866-7
https://doi.org/10.1007/s10639-019-09866-7
https://doi.org/10.1002/cae.22074
https://doi.org/10.1002/cae.22074
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/6592.6594
https://doi.org/10.1007/s10798-014-9287-7
https://doi.org/10.1007/s10798-017-9400-9
https://doi.org/10.1007/s10798-015-9304-5
https://doi.org/10.1007/s10798-018-9483-y
https://doi.org/10.1007/s10798-018-9483-y
https://doi.org/10.1016/j.chb.2019.01.036
https://doi.org/10.1016/j.chb.2019.01.036
https://doi.org/10.1023/A:1022193728205
https://doi.org/10.1023/A:1022193728205
https://doi.org/10.1177/0022466918761120
https://doi.org/10.1177/0022466918761120
https://doi.org/10.1016/j.chb.2018.12.010
https://doi.org/10.15388/infedu.2021.20
https://doi.org/10.1007/s10639-021-10536-w
https://doi.org/10.1007/s10639-021-10536-w

Ezeamuzie and Ezeamuzie

31

Wang, X.-M., & Hwang, G.-J. (2017). A problem posing-based practicing strategy for
facilitating students’ computer programming skills in the team-based learning mode.
Educational Technology Research and Development, 65(6), 1655–1671. https://doi.
org/10.1007/s11423-017-9551-0

Weintrop, D., & Wilensky, U. (2014). Situating programming abstractions in a con-
structionist video game. Informatics in Education, 13(2), 307–321.

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based program-
ming in high school computer science classrooms. ACM Transactions on Computing
Education, 18(1), Article 3. https://doi.org/10.1145/3089799

Weintrop, D., & Wilensky, U. (2019). Transitioning from introductory block-based and
text-based environments to professional programming languages in high school
computer science classrooms. Computers & Education, 142, Article 103646. https://
doi.org/https://doi.org/10.1016/j.compedu.2019.103646

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
https://doi.org/10.1145/1118178.1118215

Wu, T.-T., & Chen, J.-M. (2022). Combining Webduino programming with situated
learning to promote computational thinking, motivation, and satisfaction among
high school students. Journal of Educational Computing Research, 60(3), 631–660.
https://doi.org/10.1177/07356331211039961

Yallihep, M., & Kutlu, B. (2020). Mobile serious games: Effects on students’ under-
standing of programming concepts and attitudes towards information technology.
Education and Information Technologies, 25(2), 1237–1254. https://doi.org/10.1007/
s10639-019-10008-2

Yildiz Durak, H. (2020). The effects of using different tools in programming teaching
of secondary school students on engagement, computational thinking and reflective
thinking skills for problem solving. Technology, Knowledge and Learning, 25(1),
179–195. https://doi.org/10.1007/s10758-018-9391-y

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking
through Scratch in K–9. Computers & Education, 141, Article 103607. https://doi.
org/10.1016/j.compedu.2019.103607

Zhong, B., & Li, T. (2020). Can pair learning improve students’ troubleshooting per-
formance in robotics education? Journal of Educational Computing Research,
58(1), 220–248. https://doi.org/10.1177/0735633119829191

Zhong, B., Zheng, J., & Zhan, Z. (2023). An exploration of combining virtual and
physical robots in robotics education. Interactive Learning Environments, 31(1),
370–382. https://doi.org/10.1080/10494820.2020.1786409

Authors

NDUDI OKECHUKWU EZEAMUZIE obtained his PhD from the Teacher Education and
Learning Leadership Unit, Faculty of Education at the University of Hong Kong; email:
amuzie@connect.hku.hk. His research focuses on Computer Science Education, STEM
Education, Curriculum and Instructional Design, Computational Thinking, Learning
Science, AI in Education, and Educational Technology.

MERCY NOYENIM EZEAMUZIE is a Teacher Librarian and College Board AP
Research Teacher at International Christian School, Hong Kong; email: zeamuzie@
connect.hku.hk. Her research interests include STEM Education, Library Management,
Information Systems, Curriculum and Instructional Design.

https://doi.org/10.1007/s11423-017-9551-0
https://doi.org/10.1007/s11423-017-9551-0
https://doi.org/10.1145/3089799
https://doi.org/https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1177/07356331211039961
https://doi.org/10.1007/s10639-019-10008-2
https://doi.org/10.1007/s10639-019-10008-2
https://doi.org/10.1007/s10758-018-9391-y
https://doi.org/10.1016/j.compedu.2019.103607
https://doi.org/10.1016/j.compedu.2019.103607
https://doi.org/10.1177/0735633119829191
https://doi.org/10.1080/10494820.2020.1786409
mailto:amuzie@connect.hku.hk
mailto:zeamuzie@connect.hku.hk
mailto:zeamuzie@connect.hku.hk

