
A R T I C L E

Discovering computational thinking in everyday problem
solving: A multiple case study of route planning

Ndudi O. Ezeamuzie1 | Jessica S. C. Leung1 | Raycelle C. C. Garcia2 |

Fridolin S. T. Ting2

1Faculty of Education, University of

Hong Kong, Pokfulam, Hong Kong

2Department of Applied Mathematics, The

Hong Kong Polytechnic University, Kowloon,

Hong Kong

Correspondence

Ndudi O. Ezeamuzie, Faculty of Education,

University of Hong Kong, Pokfulam,

Hong Kong.

Email: amuzie@connect.hku.hk

Funding information

Research Grants Council, University Grants

Committee, Grant/Award Number: HKBU1/

T&L/16-19

Abstract

Background: The idea of computational thinking is underpinned by the belief that

anyone can learn and use the underlying concepts of computer science to solve

everyday problems. However, most studies on the topic have investigated the devel-

opment of computational thinking through programming activities, which are cogni-

tively demanding. There is a dearth of evidence on how computational thinking

augments everyday problem solving when it is decontextualized from programming.

Objectives: In this study, we examined how computational thinking, when untangled

from the haze of programming, is demonstrated in everyday problem solving, and

investigated the features of such solvable problems.

Methods: Using a multiple case study approach, we tracked how seven university

students used computational thinking to solve the everyday problem of a route plan-

ning task as part of an 8-week-long Python programming course.

Results and Conclusions: Computational thinking practices are latent in everyday

problems, and intentionally structuring everyday problems is valuable for discovering

the applicability of computational thinking. Decomposition and abstraction are prom-

inent computational thinking components used to simplify everyday problem solving.

Implications: It is important to strike a balance between the correctness of algorithms

and simplification of the process of everyday problem solving.

K E YWORD S

abstraction, algorithm, computational thinking, problem solving, programming

1 | INTRODUCTION

Wing (2006) described computational thinking (CT) as a problem solv-

ing approach that incorporates ‘concepts fundamental to computer

science’ (p. 33). Wing's conceptualisation, often regarded as the refer-

ence point for CT in the 21st century (Grover & Pea, 2013; Shute

et al., 2017), elicited several positive benefits associated with

CT. Amongst these, the perception that anybody can apply computer

scientists' cognition styles to everyday problems has resonated dis-

tinctly among educators, policymakers, and society. Why? The prom-

ise that CT may support problem solving, is an objective that speaks

directly to the purpose of education. According to Gagné (1985), the

crux of education is to make people better problem solvers. Everyone

encounters problems daily: What clothes should I wear? Which mode

of transport should I take? What topic should I teach? The list of prob-

lems we encounter is limitless and includes the regular ‘solve these

problems’ when assessing students' knowledge. In fact, ‘most educa-

tors regard problem solving as the most important learning outcome

for life’ (Jonassen, 2000, p. 63).
However, problem solving is a complex and amorphous construct,

especially in educational settings where the concept is used loosely to

refer to a wide variety of tasks. Although it is still theoretically difficult

Received: 4 October 2021 Revised: 26 April 2022 Accepted: 7 August 2022

DOI: 10.1111/jcal.12720

J Comput Assist Learn. 2022;38:1779–1796. wileyonlinelibrary.com/journal/jcal © 2022 John Wiley & Sons Ltd. 1779

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-8946-5709
https://orcid.org/0000-0001-8946-5709
https://orcid.org/0000-0001-8946-5709
https://orcid.org/0000-0002-6299-8158
https://orcid.org/0000-0002-6299-8158
https://orcid.org/0000-0002-6299-8158
https://orcid.org/0000-0001-9400-6566
https://orcid.org/0000-0001-9400-6566
https://orcid.org/0000-0001-9400-6566
https://orcid.org/0000-0001-7432-0187
https://orcid.org/0000-0001-7432-0187
mailto:amuzie@connect.hku.hk
http://wileyonlinelibrary.com/journal/jcal
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjcal.12720&domain=pdf&date_stamp=2022-08-25

to outline all the dimensions of problem solving, a certain level of clar-

ity has emerged over time. For example, problems may be classified

into well-structured or ill-structured (Jonassen, 1997) and routine or

non-routine (Mayer, 1998). In the early 21st century, Jonassen (2000)

argued that such dichotomous classifications of problems could be

further refined, and he identified how problems varied in terms of

their structuredness, complexity, and domain specificity.

Therefore, when Wing (2006) challenged colleagues to share the

treasures of computer science with every student through CT, the

challenge resonated with most educators, who understood CT to be

another skill that could give learners the ability to succeed in life's fun-

damental learning outcome, problem solving. This heightened impor-

tance on CT triggers the need to understand how CT can achieve this

goal. To deconstruct what it means to think like a computer scientist,

the active CT research community has continued to clarify its framing

(e.g., Barr et al., 2011; Brennan & Resnick, 2012; Csizmadia

et al., 2015; Korkmaz et al., 2017; Selby & Woollard, 2013; Shute

et al., 2017; Weintrop et al., 2016).

Most empirical studies measuring participants' development of

CT have operationalized it as a composite of programming activity

(Ezeamuzie & Leung, 2022). Often, these studies had no clear model

of CT distinguishing CT from programming (Ezeamuzie & Leung, 2022;

Lye & Koh, 2014). Outside of programming, what types of problems

can we solve with CT? While this question resonates deeply with us,

we believe it is not peculiar to us but an honest need-to-know by

computing educators. Often, students and instructors have con-

fronted us with this basic question. Unfortunately, we have been

unable to provide a sound theoretical response. Despite the explicit

positioning of CT as ‘conceptualizing, not programming’ (Wing, 2006,

p. 35), there is a dearth of understanding about the nature of the

problems that can be solved with CT. More so, Wing (2006) argued,

‘To reading, writing, and arithmetic, we should add computational

thinking to every child's analytical ability’ (Wing, 2006, p. 33). How

can we justify the elevation of CT's importance to the same level as

these time-honoured literacies if the very nature of its solvable prob-

lems cannot be clearly expounded? Of course, to construe CT as a

panacea for all problems seems delusional. Although some CT empiri-

cal investigations have adopted an unplugged approach, programming

remains the major way that CT is expressed (Lye & Koh, 2014).

For many, it is hard to articulate the need for CT when its differ-

ence from computer programming is nearly undiscernible in practice.

Without diminishing the plethora of benefits of learning how to pro-

gram a computer, the emphasis on CT stems from its affordance to

augment problem solving in everyday activities. Yes, at minimum, pro-

gramming is a beneficial skill and is useful for helping students under-

stand the operations of the pervasive technologies around

us. However, the cognitive demand to learn programming is high, and

its elevation to a skill that should be learned by every student would

probably be excessive. In fact, it was the challenge of learning pro-

gramming and the concomitant high drop-out from computer science

that necessitated Wing's (2006) challenge of computer science educa-

tors to teach every student how to use the thinking style of a com-

puter scientist to solve problems. To deliver the primary objective of

CT, understanding the nature of problems that are solvable by CT is a

gap worth investigating. From an instructional design perspective, it is

obvious that not all problems can be solved through CT. Therefore, it

is important to discover the features of problems that make them suit-

able to and solvable through CT. This knowledge will also inform how

educators can assess students' CT skills.

We acknowledge upfront that diving into the nature of problem

solving is a complex venture. Hence, we are hesitant to generalize our

findings, and this is not our aim. Rather, the purpose of this study is to

stimulate research, discussion, and empirical validation of the nature

of problems that can be solved with CT. This paper reports on a quali-

tative study that identified the features of everyday problems as

framed by two research questions:

RQ1. How is computational thinking demonstrated in

solving everyday problems without programming?

RQ2. What are the features of everyday problem solving

that uses computational thinking?

The findings from this review will provide a platform for educa-

tors, including those who are interested in joining the CT community,

to clearly grasp the conceptualisation of CT and gain perspectives on

how to design pedagogical activities. In addition, because CT has been

positioned as an interdisciplinary cognitive ability, clarifying how CT

infuses with the everyday problem will help to make the boundaries

between CT research and adjacent fields more permeable, and thus

facilitate access to researchers from other fields, who may not be well

informed about programming and theoretical computer science.

2 | THEORETICAL FRAMEWORK

In this section, we describe the theoretical context of our investiga-

tion by highlighting the key associations between CT and problem

solving.

2.1 | Computational thinking

The field of CT assumes that everybody should learn to apply the cog-

nitive strategies of computer scientists when solving problems.

Although most educators regard Wing's (2006) discussion of CT as a

pivotal moment in the 21st century CT discourse, a report on the his-

torical development of the concept by Tedre and Denning (2016)

offered deeper insight into the topic. Specifically, the works of Perils,

Knuth, and Papert are worth mentioning. Although he did not use the

term ‘computational thinking’ in 1962, Alan Perils (the first recipient

of the renowned A. M. Turing Award from the Association for Com-

puting Machinery) promoted the inclusion of programming in liberal

education (Perils, 1962, as cited in Guzdial, 2008). About a decade

later, Donald Knuth (a renowned computer scientist) theorized that

people would have a better grasp of concepts if they could teach a

1780 EZEAMUZIE ET AL.

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

computer to perform a task (Nardelli, 2019). In Seymour Papert's sem-

inal work on procedural thinking and constructionism, he argued that

children can teach computers to ‘think’ through programming

(Papert, 1980). Together with Wing's CT model, the contributions of

Perils, Knuth, and Papert embody the spirit of CT and underscore the

association between computer science and human cognition.

According to Wing (2006), CT is reflected through problem solv-

ing, system design, recursive thinking, parallel processing, data inter-

pretation, abstraction, decomposition, and heuristic reasoning. This

conceptualisation has drawn criticism for being overly broad and

somewhat vague (Mannila et al., 2014). Several frameworks have

emerged over the years to further clarify how CT can be modelled;

these include the International Society for Technology in Education

framework (Barr et al., 2011; Barr & Stephenson, 2011), Computing at

School (Csizmadia et al., 2015), and others (e.g., Brennan &

Resnick, 2012; Korkmaz et al., 2017; Selby & Woollard, 2013; Shute

et al., 2017; Weintrop et al., 2016).

These multiple conceptualisations are helpful for understanding

CT, but their differences can make cross-study comparisons difficult.

For example, Aho (2012) defined CT as the cognitive skill required to

develop algorithmic solutions for problems, where an algorithmic solution

is the ‘series of steps that control some abstract machine or computa-

tional model without requiring human judgement’ (Denning, 2017, p. 33).
In contrast with Aho (2012) conceptual definition, a review by Selby and

Woollard (2013) described CT as a composite skill having five compo-

nents: abstraction, decomposition, algorithms, evaluation, and generaliza-

tion. Other researchers have also modelled CT differently with some

overlapping components and pushing for a consensus on CT would be

both an uphill task and precarious venture (Ezeamuzie & Leung, 2022). In

this study, we relied on Wing's (2006) description of CT as thinking like a

computer scientist. This holistic approach circumvents the limitations of

other definitions, such as narrow views about CT (Denning et al., 2017;

Tedre & Denning, 2016).

2.2 | The nature of problem solving

There is no one-size-fits-all model for framing problem solving. In his

seminal work on thinking, Dewey (1910) described problem solving as

a five-step process of harmonizing two non-congruous purposes

(i.e., a problem): suggestion, intellectualisation, hypothesizing, reason-

ing, and verification. According to Dewey, the cognitive activities

involved in these steps overlap with each other when a person is solv-

ing a problem. More recently, the Organization for Economic Co-

operation and Development (OECD) identified the core ingredient of

problem solving: an activity is considered problem solving when the

method of solving the problematic situation is not immediately appar-

ent to the solver (OECD, 2013). There are other significant theories

about problem solving, such as the General Problem Solver for

information-extracting problems (Simon & Newell, 1971) and the IDEAL

(Identify, Define, Explore, Act, Look) problem solver (Bransford, 1993).

Although a detailed review of the theories about problem solving is

beyond the scope of this investigation, we found that the work of

Jonassen in theorizing the nature of problems provided an invaluable

model for constructing the meaning of problem solving and its dimensions

(Jonassen, 1997, 2000).

Jonassen (1997) identified two broad classifications of problems

that humans encounter in their lives: well-structured problems and ill-

structured problems. Problems are well-structured when they have

clearly defined specifications (i.e., problem statements), a predictive

solution process (using rules and principles), and a finite solution. Let

us take, for example, a textbook problem that asks students to find

the roots of a quadratic equation (e.g., x2 � 4 = 0). The specifications

for the problem are well-defined, the process of solving the problem

requires applying a finite set of rules (e.g., using the method of com-

pleting the square), and the problem has an unknown yet solvable

solution (x = 2 or �2). These problems are also referred to as word

problems, story problems, or classroom problems (Jonassen

et al., 2006). In contrast, ill-structured problems have undefined speci-

fications (e.g., missing parameters or unclear goals), divergent solution

processes (multiple solution paths or no solution path), and indetermi-

nate solutions (i.e., what is deemed correct is subjective). Ending

global warming, conserving the biodiversity of marine life, and choos-

ing a career are examples of ill-structured problems. According to

Jonassen (2000), in everyday settings such as the workplace, we

encounter ill-structured problems (e.g., Jonassen et al., 2006) more

often than we encounter well-structured problems posed in educa-

tional contexts.

The classification of problems as either ill-structured or well-

structured has several limitations. First, the idea of solving well-structured

problems seems to contradict the OECD's (2013) position that problem

solving is the search for solutions that are not obvious to the solver. Fol-

lowing from this, deciding whether solving a quadratic equation should be

regarded as problem solving would be dependent on the solver's prior

knowledge and experience. In addition, the definition of an ill-defined

problem fails to distinguish between the problem of designing a stadium

to maximize seating without overcrowding and the problem of tackling

global warming. In other words, this binary classification of problems based

on their structuredness alone does not account for the individual differ-

ences between problem solvers or the complexity of problems. Informed

by these limitations, Jonassen (2000) elaborated on the nature of problem

solving for instructional designers in his demonstration of how problems

differ in terms of their structuredness, complexity, domain specificity, rep-

resentation, and individual differences. Depending on the problem solver's

properties (e.g., domain-specific knowledge and experience), problems

have variable levels of complexity that scale from simple to complex.

2.3 | CT approach to problem-solving

How has CT been used to solve problems? Some practical examples

of embedding CT in classroom problem solving were documented by

Yadav et al. (2016). These included using big data analytics in a social

studies class to examine the linguistic composition of US presidential

inaugural speeches across four centuries and analysing publicly avail-

able data in a science class to make sense of greenhouse emissions.

EZEAMUZIE ET AL. 1781

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

These examples illustrate the variation and complexity in describing

the association between CT and problem solving. Although some

studies (e.g., Román-González et al., 2017) have reported a strong cor-

relation between CT and problem solving, others (e.g., Çiftci &

Bildiren, 2020; Psycharis & Kallia, 2017) have found no significant

influence of CT on students' problem solving abilities. However, this

disparity is not unexpected due to the diverse conceptualisations of

these concepts. For example, unlike the operationalization of problem

solving through mathematics test (Psycharis & Kallia, 2017), Román-

González et al. (2017) modelled CT as an aggregate of sequence, loop,

conditionals, and functions in a multiple-choice test and construed

problem solving from an off-the-shelf test that measures learners'

speed and flexibility in manipulating logic. Therefore, it is important to

understand the context when interpreting the relationship between

CT and problem solving. Taking the broad definition of a problem

(i.e., harmonizing two non-congruous purposes), CT studies that mea-

sured learners' performance offer insights into the nature of problem

solving. As the pool of such studies is large, we restrict our discussion

below to those studies that targeted the acquisition of problem solv-

ing and CT as their learning outcomes.

2.3.1 | Problem solving as a learning outcome

Consistent with the finding that computer programming is the primary

way of learning CT (Lye & Koh, 2014), problem solving was identified as

the core learning outcome in a review that investigated what students learn

through programming (Popat & Starkey, 2019). Problem solving in the

reviewed studies was conceived either as the application of mathematical

concepts to coding tasks or the enhancement of mathematical skills

through programming. For example, in a case study investigating the devel-

opment of mathematical sense, problem solving was conceived as the abil-

ity of kindergarteners to control the behaviour of a virtual character

(a ladybug, similar to the Logo programming language turtle) by constructing

paths and navigating a maze programmatically (Fessakis et al., 2013). Other

studies conceived problem solving based on kindergarteners' performance

in a 50-item multiple-choice questionnaire (Çiftci & Bildiren, 2020), primary

school students' perception of problem solving in a 24-item self-reported

scale (Kalelioglu & Gülbahar, 2014), and high school students' solutions to

items in a government-standardized mathematics test (Psycharis &

Kallia, 2017). Beyond the mathematical contexts, an ethnographic study by

Melander Bowden (2019) investigated epistemics-in-interaction in Scratch

programming. In the study, children were instructed to modify the visual

and auditory aspects of a game as the assigned problem-solving activity.

These studies showed the varied ways that problem solving could be con-

ceived both within and in between domains.

2.3.2 | CT as the operationalized learning outcome

Most CT studies assessed learners' CT skills as the manifestation of

problem solving ability. For example, in investigating learners' CT

development, problem solving was framed through testing students'

ability to draw electronic circuits in a maker activity (Yin et al., 2020),

assessing in-service teachers' understanding of CT concepts and prac-

tices (Kong et al., 2020), and testing students' ability to create projects

in an outreach program (Panskyi et al., 2019). These examples depict

the diverse ways that empirical studies construed problem scenarios.

Weintrop et al. (2016) discussed how problem solving could be opera-

tionalized through four practical areas of CT (i.e., data practices,

modelling and simulation, computational problem solving, and system

thinking) in science and mathematics classes.

Apart from CT as learning outcomes in diverse problem scenarios,

problem solving has been conceptualized as a learning process. This

was the case when Ma et al. (2021) explored how a five-tiered

problem-solving instructional model influenced the CT skills of pri-

mary school students. In the model, students in the experimental

group were taught to solve problems following a linear order:

(i) identify the problem, (ii) gather data, (iii) generate a solution,

(iv) implement the solution, and (v) assess the solution. Students in the

experimental group recorded significant improvements in both CT

skills and self-efficacy. However, in this model, the nature of problems

that were solvable by CT was unclear.

2.4 | CT in everyday activities

Detaching all elements of programming from CT may not be feasible

in some scenarios. Nonetheless, the problems we encounter in daily

life often do not require complex representations in forms such as

programming or arithmetic. In CT discourse, one of the commonly

used sets of problems that is closest to everyday problem solving is

the Bebras challenge (Dagienė & Sentance, 2016), which is a collection

of short age-adaptive questions that model real and non-domain spe-

cific problems. Implicitly, studies that have measured CT using the

Bebras tasks have strongly associated problem solving with daily

activities; notably, these questions could be adapted for learners with

low epistemic inclination to programming. For example, Chiazzese

et al. (2019) demonstrated how CT correlated with everyday problems

by selecting 10 Bebras questions to investigate the effectiveness of

robotics laboratory training in developing CT among primary school

students. Of course, other tasks that measure performance as prob-

lem solving and CT skills contain elements of everyday problems. For

example, the challenge to construct paths and navigate a maze pro-

grammatically in Fessakis et al. (2013) was an implementation of route

planning, which is an everyday problem. However, the way that the

solution was represented (i.e., programming) is not a conventional

approach that most people would use in their daily lives.

To raise awareness about the use of CT in everyday problem solv-

ing, Standl (2017) designed the ‘pack your moving box’ activity as an

example of an everyday problem and challenged students to sketch

their idea using a five-step process (understand, abstract, decompose,

design, and test) to solve the problem of how to pack and move their

boxes efficiently. Although the problem solving challenge improved

students' awareness of CT problem solving, Standl found that stu-

dents struggled in abstraction and decomposition. Other studies

1782 EZEAMUZIE ET AL.

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

(e.g., Chen et al., 2017; Shen et al., 2020) also included everyday prob-

lem solving in their investigations into CT. In the study by Chen et al.

(2017), everyday problems, such as finding an optimal way to load a

washing machine, were operationalized as multiple-choice questions.

Shen et al. (2020) operationalized everyday problem solving through

an exercise in which participants were asked to deduce the most cost-

effective route between two locations, given a map showing a net-

work of flights and information about costs and travel time. Although

the task of finding the most cost-effective flight was open-ended and

offered some insight into the use of CT in everyday problems, the

researchers' analysis focused on comparing the pre-test and post-test

improvements after a robotic intervention. Standl's (2017) study was

the closest to our study in its consideration and analysis of everyday

problem solving detached from programming.

As a summary, Figure 1 shows the problem space in which prob-

lems are mapped according to the dimensions of structuredness and

complexity. Problems are depicted on a continuum in the overlapping

axes of structuredness and complexity (Jonassen, 2000; Simon, 1973).

Specifically, the position of a problem in the problem space is not

static. This implies that a particular problem could be perceived differ-

ently by different problem solvers (e.g., the P1–P5 in Figure 1). The

perceived position of a problem is determined by the problem repre-

sentation and the problem solver's familiarity, knowledge, metacogni-

tion, epistemological beliefs, attitude, and motivation about and

towards the problem (Jonassen, 2000).

3 | METHODOLOGY

3.1 | Multiple case study of a routing problem

Tying back to the aim of this study (i.e., understanding the features of

problems solvable by CT), a case study was deemed a suitable

approach for launching an in-depth investigation. A case study is a

form of research design that allows for the investigation of complex

issues by probing participants' views (Yin, 2018). As established in the

theoretical framing above, problems are complex and hard to general-

ize. Thus, the multiple case study approach (Stake, 1995), a variant of

the case study approach, was considered to be even more desirable

because it allows for the harvesting of rich data from multiple partici-

pants, thereby supporting a deeper understanding through cross-case

analyses of an issue of interest. In this study, we probed how seven

university students solved a routing problem (an instance of an every-

day problem).

Routing and navigation problems are familiar routine challenges

that we encounter daily. Every day, people choose routes and modes

of transportation that offer the most effective paths to work, school,

and home. What constitutes ‘effectiveness’ varies according to differ-

ent variables, including time, distance, and cost. In fact, routing chal-

lenges, although often infused into programming, are CT problems

that are commonly encountered when seeking to control physical

robots or virtual agents, such as when writing programs to construct

paths for an agent to navigate a maze (Fessakis et al., 2013), or when

designing code sequences to make a robot travel via a certain path

(Chen et al., 2017). Similar to Chen et al. (2017) and Fessakis et al.

(2013) that implemented CT solution by constructing paths for agents

but programmatically, a routing problem was selected for this study to

investigate both the features and implementation of CT when decon-

textualized from programming.

3.2 | Context

Funded by the government, this study was part of a large-scale collab-

orative project between five universities in the region. In view of the

ubiquity and increasing impact of technology on how we live, work,

and study, the project aimed to expose all the university students

(irrespective of their program of study and academic level) to the

potentials afforded by programming and to an understanding of how

programming underlies the operation of technology. Every academic

year, three cohorts were recruited to participate in a non-credit-

bearing Python programming course. By the end of the course, stu-

dents were expected to appreciate the importance of programming

and ideally use the acquired skills to create innovative applications

with environmental, social, and educational benefits.

For this study, data were collected from the January 2021 cohort.

Due to the COVID-19 pandemic restrictions at that time, a virtual

flipped learning model was adopted for the training, which spanned

8 weeks. Students attended four online lessons via Zoom (a group vid-

eoconferencing application; https://zoom.us/). These lessons were con-

ducted fortnightly, with each lesson lasting for 1.5 h. At the end of every

class, students were assigned take-home tasks (problems) to attempt and

submit before the next lesson. Students were encouraged to explore other

resources that could help them solve the take-home challenges. We used

Blackboard (a learning management system; https://www.blackboard.com/)

and Google Colaboratory (a free, scalable and browser-based Python code

F IGURE 1 Problem space: Mapping of problems across the
dimensions of structuredness and complexity

EZEAMUZIE ET AL. 1783

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://zoom.us/
https://www.blackboard.com/

editor; https://colab.research.google.com/) to organize the learning

activities.

3.3 | Learning activities and material

Because the participating students came from diverse backgrounds

and the course was open to all students without any prerequisite

courses, we assumed that majority of the cohort would be beginners

with little or no knowledge of programming. The learning activities

were collaboratively designed by the instructor and the project team,

which comprised experts in educational technology and computer sci-

entists. Programming problems with different levels of complexity

were also designed to account for students with greater exposure,

interest, and programming abilities.

Table 1 summarizes the focal objectives of the lessons. Although

the learning objectives were depicted as a list, they were taught in the

context of problem solving. The course instructor emphasized the

concepts by walking through take-home tasks and posing problems

for students to ‘learn by doing’, an instructional model patterned after

Papert's (1980) constructionism but guided with close-ended prob-

lems. A pool of 15 take-home tasks with varying levels of

complexity was developed. Although the tasks were not compulsory,

students were encouraged to attempt as many problems as they

could. One important feature of these tasks was that the problems

were masked from common solutions found on the web. For example,

instead of asking students to design a search or sort algorithm, for

which they could easily find standard solutions on the web, we modi-

fied the tasks to draw them into deeper learning (see Appendix for

examples of the take-home tasks).

Throughout the training, the students were reminded that CT could

be demonstrated if they used the fundamental concepts of computer sci-

ence acquired in learning programming to solve everyday problems.

3.4 | Participants and case selection

The January 2021 cohort comprised 82 students from different aca-

demic programs and levels at one of the participating universities. The

free Python programming course was advertised through the univer-

sity's online portal and bulk email and posted on physical noticeboards

across the campus for ~6 weeks before the commencement date. Regis-

tration was opened only to students on a first-come, first-served basis.

Participating students signed up through the university's authentication

portal. Before the study, ethical clearance was obtained from the institu-

tional review board. Participants were informed about their rights, the pri-

vacy policies, and the data management plan. Of the 82 students

registered in the course, seven submitted their responses to the CT open-

ended question (see Section 3.5). Subsequently, these seven students

(see Table 2), who constituted the cases in this study, volunteered to par-

ticipate in a follow-up interview.

3.5 | Data collection

3.5.1 | Open-ended CT tasks

A routing problem in the form of food delivery service task was

assigned to the students. The students played the role of a restaurant

manager whose daily duties included ensuring that delivery motor-

bikes delivered food to customers efficiently. They were presented

with isomorphic representations of a map showing different sets of

travel times between the restaurant (R) and the locations A, B, and C

(see Figures 2–4). The numbers in the circles represented the average

time (in minutes) required to travel by motorbike between two loca-

tions (e.g., it would take 3 min to travel from B to R in Figure 2). In the

fictional scenario, three customers at locations A, B, and C simulta-

neously requested the restaurant to deliver food to them.

TABLE 1 Course learning objectives

Lesson Objective

One Know that Python is a high-level interpreted language

Be familiar with the Google Colaboratory environment

Identify and distinguish between data types (integers,

floats, strings, booleans)

Understand and apply variables in a script

Use the built-in functions such as input() to receive user

entries within a program

Two Use comments in a script

Identify how conditionals and logical operators are used in

a program, and apply them in basic scenarios

Use for and while loops to efficiently program repetitive

tasks

Three Identify, distinguish, and understand what data structures

(lists, tuples, dictionaries) are and how to access and

manipulate their elements

Use in-built and user-created functions to program basic

app features

Find and apply Python modules from the Standard Python

Library

Four Understand how to read and write into text files, and apply

this in a script

Know that Python has packages and modules for data

analysis and manipulation

See an example of NumPy and Pandas to read data and

make basic observations

TABLE 2 Participants and their academic programs and levels

Pseudonym Gender Academic program Academic level

Arthur Male Computing Fourth year

Ben Male Science Fourth year

Charlie Male Accounting Fourth year

Dan Male Engineering Second year

Eddy Male Computing Postgraduate

Ethan Male Engineering First year

Felicia Female Mathematics Postgraduate

1784 EZEAMUZIE ET AL.

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://colab.research.google.com

Three open-ended questions were posed as follows:

Task 1: Study Figure 2 and suggest the most efficient route for deliv-

ering food to the three customers, starting from R and returning to R

(e.g., RABCR, RBRCAR, RACRBR). Also, describe to your primary

school-aged niece how you decided on the route.

Task 2: After 3 months, due to road improvement work around the

restaurant, the travel times to the different locations have changed, as

shown in Figure 3. In light of the new situation, please suggest the

most efficient route for delivering food to the three customers, start-

ing from R and returning to R. Also, describe to your niece in primary

school how you decided on the new route.

Task 3: As a result of your excellent performance in coordinating

food delivery efficiently, you are promoted. However, in the new

role, you are tasked with training the incoming manager on how to

optimize the delivery service. Because the travel times to different

locations (A, B, and C) can change in the future, they are repre-

sented using unknown variables (u, v, w, x, y, z), as shown in

Figure 4. Describe to the incoming manager how to find efficient

routes.

For these tasks, students were reminded that it was not sufficient

to merely say, ‘I chose a route (e.g., RABCR) because it was the fast-

est’. A qualified response would also explain why the other routes

were not chosen. They were encouraged to use any type of represen-

tation or annotation to explain their solutions, such as words, texts,

diagrams, flowcharts, computer code, or a pseudo-code.

3.5.2 | Class observation and follow-up interviews

Apart from the participants' answers to the food delivery task, the stu-

dents' responses during the programming class and one-to-one inter-

views with the seven cases provided invaluable Data S1 for

triangulation. For example, students were asked at separate times in

the programming class to describe how they came to school. On each

occasion, a varying level of structuredness, in the form of prompts

and cues, was added to elicit their CT problem solving.

The follow-up interviews, which were conducted after 3 weeks of

the course had been completed, lasted for 15 min per case. The inter-

views were designed to meet two aims: (a) to allow the participants to

F IGURE 2 Normal routing of the food delivery service in Task 1

EZEAMUZIE ET AL. 1785

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

elaborate on their food delivery solution and (b) to probe their con-

ceptual understanding of CT (and how it differed from programming).

3.6 | Data analysis

In the theoretical framing of this study, we noted the complexities in

modelling problem solving and the multiple conceptualisations of CT

(e.g., Barr et al., 2011; Brennan & Resnick, 2012; Csizmadia

et al., 2015; Korkmaz et al., 2017; Selby & Woollard, 2013; Shute

et al., 2017; Weintrop et al., 2016). Although the diversity of interpre-

tations of CT had some benefits, we were confronted with the chal-

lenge of analysing the data without a consensus on the framing of

CT. Therefore, we relied on Wing's (2006) seminal description of CT

as the use of fundamental concepts of computer science to solve

everyday problems. Because it is not clear what constitutes CT, the

grounded theory approach (Glaser & Strauss, 1968, 2017) was most

suitable for analysing our data. The grounded theory approach relies

on data to uncover the theme and constructs pertaining to the issue

of interest. This approach fit our exploratory enquiry about the

features of CT solvable problems. Therefore, we coded the submitted

data by identifying the computer science concepts that were reflected

in the solutions.

4 | RESULTS

4.1 | Summarizing the problem solving of the cases

In this section, we briefly present the participants' solutions to Tasks

1, 2, and 3 to elicit the diverse approaches to everyday problem solv-

ing. The full documents submitted by the participants (Arthur, Ben,

Charlie, Dan, Eddy, Ethan, and Felicia) are available as Data S1. Several

references to the locations R, A, B, and C are made in presenting these

results and also in the discussion section. Therefore, familiarity with

the maps (Figures 2–4) is helpful for understanding some of the tech-

nicalities in the reporting of the results and the discussion.

Arthur presented the solutions to the routing problems by

describing the process in textual form. According to him, RCRABR

(16 min) and RABCR (14 min) were the optimal paths (i.e., the routes

F IGURE 3 Modification of the food delivery service routing after 3 months due to road construction and improvement work in Task 2

1786 EZEAMUZIE ET AL.

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

with the shortest travel times) in Task 1 and Task 2, respectively.

Arthur did not attempt the third question.

Ben solved the problems by programming with Python. Using

404 lines of code, he designed an automated solution and represented

the travelling time between adjacent locations using placeholders

(i.e., ‘variables’ in programming terminology). For Task 1, Ben's pro-

gram returned four efficient pathways (i.e., RABRCR, RBARCR,

RCRABR, and RCRBAR), with a total travel time of 16 min for each

pathway. When the travel times between adjacent locations in Task

2 were assigned to the placeholders, Ben's program found two opti-

mal routes (RABCR and RCBAR), with a travel time of 14 min.

Although the number of routes that emerged from Ben's programmed

solution was different from the number arrived at in Arthur's textual

solution, a close examination revealed that the routes in the two solu-

tions were the same except that Ben's solution captured different

combinations of the optimal routes.

Charlie had an interesting approach. Presenting his solution in the

form of written text, he noted that 24 routes should be compared to

determine the route with the shortest travel time. Charlie did not sub-

stantiate how the epistemics of permutation and combination supported

his claims, and he successfully listed only 20 of his claimed 24 routes.

Although Charlie was unable to list all 24 of the viable routes, his solution

found four and two optimal routes in Task 1 and Task 2, respectively.

These solutions were the exact routes that Ben found in his programmed

solution. For Task 3, which was meant to evaluate the student's ability to

develop a generic and automated solution, Charlie expressed his solution

using mathematical equations. The proof of correctness is beyond the

scope of this study.

Dan developed his solution by describing the process in textual

form. Like Arthur, Dan found RABRCR (16 min; the same route as

Arthur's RCRABR but with a different combination) to be the optimal

route for Task 1. His solution to Task 2 was the same as Arthur's

RABCR (14 min). For Task 3, Dan formulated a series of mathematical

equations (see Figure 5).

Eddy and Ethan collaborated with each other on the tasks. Their

approach was similar to Charlie's listing of the possible combinations

of routes in Task 1 and Task 2. However, unlike Charlie, who claimed

that it was necessary to compare 24 pathways, Eddy and Ethan com-

pared only six routes, as shown in Figure 6. Based on a close examina-

tion of their approach and the follow-up interview with them, we

F IGURE 4 Design of generic solution for optimal and efficient food delivery in Task 3

EZEAMUZIE ET AL. 1787

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

discovered that they had treated location R only as the start and final

location, ignoring routes that could have included R as a possible

intermediary location. Unlike other participants who found a 16-min

optimal route in Task 1, Eddy and Ethan returned two routes (RCBAR

and RABCR), with a travel time of 17 min for each route. Their solu-

tion for Task 2 was consistent with other participants' solutions, find-

ing two optimal routes (RABCR and RCBAR) each with a travelling

time of 14 min. For Task 3, Eddy and Ethan stated that an optimal

solution could be generated using Dijkstra's algorithm. However, they

did not substantiate how the algorithm could be applied to this prob-

lem. Dijkstra's algorithm (Dijkstra, 1959), named after the designer

and recipient of the Association of Computing Machinery A. M. Turing

Award, is a fundamental algorithm for finding the shortest paths

between nodes in a graph with wide application in the design of com-

puter networks. A discussion about Dijkstra's algorithm is beyond the

scope of this paper, but its application is significant when considering

the shortest path between two nodes in a graph, which is synony-

mous with the shortest travel time between two locations in a road

network. Although Eddy and Ethan's idea to use Dijkstra's algorithm

was commendable, the nature of the everyday routing problem in

Task 3 imposed the condition of visiting three locations (A, B, and C)

before returning to the starting R and therefore did not fit directly

with Dijkstra's algorithm (except with appropriate modification).

Felicia, the only female participant, listed seven plausible routes

before comparing them to determine the route with the shortest

travel time. Similar to Eddy and Ethan's list of six plausible pathways,

it was unclear how Felicia had determined the seven routes, especially

in light of Charlie's realization that there were 24 viable pathways.

Nevertheless, whether by serendipity or thoughtful design, Felicia

found that RCRABR (16 min) and RABCR (14 min) were the optimal

F IGURE 5 Snippet of Dan's
mathematical equations for the optimal
routing solution

F IGURE 6 Eddy and Ethan's solution
with six pathways

1788 EZEAMUZIE ET AL.

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

paths in Task 1 and Task 2, respectively. For Task 3, Felicia repre-

sented the total travel time of each of the seven routes as a mathe-

matical expression of the missing variables, as shown in Figure 7, and

submitted that the route with the shortest travel time denoted the

efficient solution.

4.2 | Cross-case analysis: CT practices in everyday
problem solving

In relation to the first research question (i.e., to understand how CT

was demonstrated in solving everyday problems), the findings from

the cross-case analysis are discussed in this section. Because the pri-

mary focus of the study was CT without programming, all the solu-

tions except for Ben's Python program were included in the analysis.

4.2.1 | Decomposition

Decomposition is the breaking down of a process or object into smaller

components, with the overarching goal of making tasks manageable and

simplifying their solutions. Arthur and Dan examined the travel times

between the four locations (A, B, C, and R). In total, in Task 1, there

were six point-to-point links with travel times of 2, 3, 4, 5, 6, and 8 min.

Arthur and Dan decomposed (broke down) the problem by visualizing

the routing as the aggregate of the travel times of constituent direct

paths between adjacent locations (e.g., RC = 2 min, AC = 8 min). There-

fore, it was easy for Arthur and Dan to avoid the paths that would have

taken a longer time. By choosing this approach, they were able to deter-

mine how to directly reduce the travel time between two locations.

Specifically, they avoided the two longest paths from C (i.e., AC = 8 min

and BC = 6 min).

Charlie, Eddy, Ethan, and Felicia demonstrated decomposition dif-

ferently. Whereas Arthur and Dan had broken down the problem into

point-to-point routes, Charlie, Eddy, Ethan and Felicia demonstrated

decomposition by breaking down the problem into possible route

combinations. Charlie and Felicia found 20 and 7 routes, respectively,

whereas Eddy's and Ethan's collaboration yielded 6 routes as the out-

put of their decomposition.

When a complex system is reduced to its components, it is easier

to understand the scope, relationship, and pattern that exist between

the components. With the problem decomposed as the aggregate of

plausible routes, it was easy to compare them to find the route with

the shortest travel time.

4.2.2 | Abstraction

The essence of abstraction is focusing on important components and

ignoring irrelevant details. In Task 1, Arthur considered paths AC and

BC to be irrelevant for finding the optimal path. He flagged the impor-

tant aspect of the problem by rephrasing and narrowing the problem

to the challenge of finding the optimal route between R, B, and A only.

Clearly, Arthur was practising abstraction by removing non-relevant

elements (AC and BC) and focusing on the essential components

(R, B, A). In addition, abstraction has an interesting relationship with

decomposition. Decomposition is the primary enabler of abstraction.

For example, it was through decomposition that the differences in the

paths' travel times were highlighted in Task 1. Consequently, Arthur

excluded the two longest paths (i.e., AC = 8 min and BC = 6 min) and

identified the only optimal path to C (i.e., RCR of 4 min must be a sub-

path of the optimal solution). With the focus narrowed to locations R,

B, and A, Arthur discovered that he was left with two possible

options: either a circular path of RABR/RBAR (12 min) or a path

F IGURE 7 Felicia's mathematical
expression of the total travel time

EZEAMUZIE ET AL. 1789

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

transversing through location R in the sequence RARBR/RBRAR

(14 min). The former had the shortest travel time and was chosen as

the subpath of the total solution yielding RCRABR (16 min) as the

optimal solution for the routing problem. The intertwined relationship

between abstraction and decomposition validates the designation of

decomposition as a precursor to abstraction in CT problem solving

(Ezeamuzie et al. 2022).

Another variant of abstraction was demonstrated in the solutions

by Charlie, Felicia, and Eddy and Ethan. Although abstraction is popu-

larly conceived as the act of focusing on the important components in

a system, these participants demonstrated abstraction as an alternate

representation of an object/process. They transformed the problem

into a form of mathematical representation using combination and

permutation, which was detached from the original nature of the

problem. This is similar to the process of data transformation featured

in the study by Kong and Lao (2019), in which in-service teachers

demonstrated abstraction by mathematically representing the total

queueing times of customers in a supermarket as part of an algorithm

for finding the fastest service counter.

4.2.3 | Algorithm—A derivative of pattern
recognition and automation

The position of algorithm in CT discourse was aptly captured in Aho's

(2012) definition of CT as the skill required to develop algorithm. Task

3 was posed to elicit the students' ability to design functional

algorithms.

To design an algorithm for Task 3, Felicia found the repeating pat-

tern in her solutions to Task 1 and Task 2 to be useful. This was evi-

dent from her use of the same approaches in the two tasks that

generated the 7 possible routes. ‘I extended the pattern in solving

Task 3’, Felicia said during the interview. Here, it is not suggested that

Felicia's algorithm yielded the correct solution. Rather, her problem

solving highlighted how the identification of patterns aided the design

of the algorithm. This is not always the case. Charlie and Eddy and

Ethan used a similar approach and found a common pattern between

Task 1 and Task 2. However, their algorithmic solutions for Task

3, which took the forms of a mathematical equation and Dijkstra algo-

rithm, respectively, were not informed by their solutions to Task

1 and Task 2.

Arthur did not attempt Task 3. In the interview, we discovered

that his inability to design an algorithmic solution was linked to his

use of different approaches in Task 1 and Task 2. Although Task

1 and Task 2 were similar problems except for the specified travel

times, the differences in Arthur's approaches hindered him from dis-

covering the commonality in the tasks. In Task 1, Arthur used an elimi-

nation approach to discard paths AC and BC. However, in Task 2, he

adopted an inclusion approach by selecting ARC as a subpath of the

total solution: ‘Path ARC and AC have the same length, but ARC also

connected to R, so ARC is a better option than AC’. According to

Arthur, ‘I relied on my guts to optimize the solutions for Task 1 and

Task 2’. His inability to discover any underlying rules meant that the

solutions could not be automated. As with Arthur, Dan also used dif-

ferent approaches to solve Task 1 and Task 2. Hence, he also failed to

discover the underlying pattern.

We thus found that the participants' ability to design algorithms,

often described as a step-by-step solution, was hinged on discovering

the underlying patterns and organizing the identified patterns into

automated rules. What constitutes patterns from decomposing a

problem becomes vivid when such discoveries can be articulated in

the form of concrete rules. The product of the algorithm becomes

obvious from automation, the ability to use the generated solution in

different scenarios.

4.3 | Cross-case analysis: Features of everyday
problem solving

In answer to the second research question, we found three character-

istics of everyday problem solving using CT.

4.3.1 | Simplification trumps formal proof of
correctness in everyday problem solving

Irrespective of the representation, applying CT to solve everyday

problems was not trivial. Whereas most of the participants, except

Eddy and Ethan, found the correct optimal path, they all expressed

uncertainty about the correctness of their solutions.

For example, the analysis of Arthur's solution shows the complex-

ity of solving a problem. In Task 1, although Arthur intuitively avoided

the paths with longer travel times to reduce the total time, it was

unclear why he chose to exclude only two paths and not others such

as AB, which had a travel time of 5 min. Implicitly, whether or not

Arthur's solution was correct, it became obvious that solving everyday

problems falls short of a formal proof of correctness because other

problem solving methods, such as human intuition and guessing,

co-exist in the solutions. When Arthur's focus was narrowed down

to three locations (R, A, and B), he was able to construct an instant

mental solution from the emerging pattern. This was not the case

when he considered four locations (R, A, B, C). It appears that

Arthur's cognition could not decode underlying patterns with cer-

tainty when traversing four locations. Hence, he relied on decom-

position and abstraction to simplify the problem.

Arthur's approach was consistent with the discovery that

emerged when participants were asked to think about how their solu-

tions would be affected if extra locations were to be added to the

routing map (e.g., choosing an efficient path through five locations).

Eddy, Ethan, and Ben noted that additional locations would result in

an exponential increase in complexity and conceived that the solution

would be much harder for humans. Other participants' solutions dem-

onstrated varying levels of complexity. Charlie's and Dan's mathematical

equations, Eddy and Ethan's Dijkstra algorithm, and Ben's programming

solution embodied the complex knowledge and skills that were applied to

solve the everyday problem with CT.

1790 EZEAMUZIE ET AL.

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Is it necessary to apply these complex schemas in solving every-

day problems? There is no simple binary answer to this question,

because what we conceived as everyday problems varied in a contin-

uum. When the participants focused on achieving proven correctness

in the algorithm, the complexity of problem solving became enormous.

However, several everyday problems do not require such a high level

of correctness. Ethan's response to the question of how he would

apply CT captured this aptly: ‘When I do a job such as processing doc-

uments, I will consider ways to smartly save my time and finish the

job well’. Decomposition and abstraction are more useful in these sce-

narios than the proven correctness of the algorithm.

4.3.2 | Structuring and restructuring of problems
increases the applicability of CT

Generally, everyday problems require structure to enable stu-

dents to recognize how CT can be applied in their solutions. The

higher the level of structuredness, the easier and more obvious

the application of CT becomes. For example, as part of the obser-

vation, we posed these two questions during the online training

classes: (a) describe how you come to school and reflect on how

CT facilitated your choice, and (b) describe how you chose a

checkout counter in a department store and reflect on how CT

facilitated your choice. In response to the first question, most of

the students gave simple answers such as ‘by bus’, ‘using the

train’ or ‘I walk to school’. For the second question, all the stu-

dents replied that they chose counters that had the fewest peo-

ple in the queue.

However, students responded differently when more structure

was added to the question, such as the distance of the school from

home, the presence of alternative modes of transport, travel times,

and the costs of various modes of transport. In this structured con-

text, they explained the factors they considered when choosing their

means of transport to school, and their explanations included more

detail, such as comparisons of alternatives. Similarly, in response to

the second question, students responded with improved clarity

and logic when additional cues were added, such as the number of

items in the customers' carts and the availability of express coun-

ters. Considering that the students were not bound by time to

elaborate on their solutions, a plausible explanation for the differ-

ence in their responses is that students are not naturally

acquainted with the propensity to apply CT in everyday problem

solving unless it is structured.

In addition, the students noted that they had never used the

CT approach explicitly to solve everyday problems; this was aptly

captured in Ben's interview: ‘These kinds of solutions usually come

from my mind’. Therefore, students should be taught and encour-

aged to explicitly think of CT as a problem solving approach. To

successfully apply CT in everyday problem solving, students need

to ‘see’ the problem from a wider perspective, determine the fac-

tors that could influence the solutions, and intentionally apply the

discovered structures.

4.3.3 | Everyday problem solving encompasses
latent CT practices

In Section 4.2, we identified decomposition, abstraction, pattern rec-

ognition, algorithm, and automation as dimensions of CT exhibited in

students' everyday problem solving. Except for algorithm, which is

linked to sequencing and decision making, the participants neither

explicitly nor consciously applied these CT practices to their solutions.

When Ethan was asked if he had ever applied CT consciously in

solving everyday problems, his response was consistent with this find-

ing. According to him, ‘In my daily life, I think I have adopted some of

them but not the theory; like going to work and office, I have thought

about which route is the best for me and save more time’.

4.4 | Decontextualizing everyday problem solving
with CT from programming

The underpinning aim of this study was to understand how CT could

be practised without the cognitive burden of programming. As we

stated earlier, unless the research community can delineate these

overlaps, arguments for CT that are detached from programming will

continue to be vague, especially in light of the dominance of computer

science and programming education as well-established domains.

Because the introductory programming class was open to stu-

dents from every discipline, participants were instructed to solve the

problem with or without programming (e.g., using a textual description

or a flowchart). We anticipated that participants would either be nov-

ices or have sparse exposure to programming. We presumed that they

would not be able to solve the problem programmatically. However,

we were wrong. Ben, a fourth-year science student, wrote a computer

program as the solution, which allowed for further investigation into

the varied representation and complexities of everyday problem solv-

ing. Originally, our focus was to answer the two research questions

stated in the introduction section. However, the data provided by

Ben's programming solution prompted us to ask and discuss a third

question:

RQ3. What are the differences and similarities (if any)

between the computer programmed and non-programmed

CT solutions to everyday problems?

Ben wrote 404 lines of Python code! Using programming as a rep-

resentation in problem solving lies beyond the usual scope of

approaches that people use to solve everyday problems. Ben relied on

several Python modules that were not discussed in the learning activi-

ties. In a follow-up interview, Ben acknowledged that although he had

not programmed in the last 3 years prior to the coding workshop, he

relied on his past C++ programming experience to solve the routing

task using Python. Testing for the correctness of Ben's program was

beyond the scope of this paper. However, when Task 1 and Task

2 were used as test cases, the outputs were correct. Also, in the inter-

view, Ben expressed strong optimism that his program would solve

EZEAMUZIE ET AL. 1791

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

similar problems with different point-to-point travelling times, pro-

vided that the travelling map was not altered.

What were the differences in practices between Ben's pro-

grammed solution and the solutions that had not used programming?

Ben used several loops (i.e., the ‘for’ and ‘while’ keywords in Python),

conditionals (i.e., ‘if–else’ decision constructs), and programming vari-

ables. However, the application of loops and the use of variables were

conspicuously absent in the non-programmed solutions. Although

conditionals were used in the non-programmed solutions, they were

implicit, unlike their explicit use in Ben's programmed solution. For

example, when Charlie compared the 24 possible paths to deduce the

optimal route, he was implicitly demonstrating the application of the

‘if–else’ conditional. In contrast, Ben's program showed the detailed

steps that yielded the final solution, which represented the algorithm.

However, Ben was unable to explain how he used decomposition and

abstraction practices to simplify his solution. Because he did not cre-

ate any user-defined function or class, we could not further decode

his planning and design strategies.

Differences in the programmed and non-programmed solutions

were also evident in terms of the nature of the practices of abstrac-

tion, decomposition, and algorithm design. In the programmed solu-

tion, these concepts were practised on a micro scale, such as how the

data were manipulated in the arrays and interoperabilities of the appli-

cation's programming interface. These findings are consistent with

studies that found differences in human cognition and programming,

such as the unnaturalness for humans of solving computational tasks

using looping and multi-branched conditionals (Miller, 1981; Pane &

Myers, 2001).

5 | DISCUSSION

We embarked on this investigation to understand how CT could be

used in everyday problem solving. Our motivation stemmed from the

concern that the blurry boundaries between programming and CT

may be impeding the development of CT. Wing's (2006) seminal arti-

cle stated clearly that CT is about conceptualisation, rather than pro-

gramming, and the context of Wing's account of CT was based on the

belief that the wealth of the cognitive practices of computer scientists

should be transferred to learners outside of computer science. CT is

still an actively developing field with immense potential, as seen in the

increasing integration of education robotics, virtual reality, and artifi-

cial intelligence in mainstream learning. Also, the proliferation of age-

adaptive visual platforms for programming, game development, and

simulation demonstrates the vast learning opportunities in

CT. However, irrespective of how research and practice have pre-

sented CT as detachable from programming, an underlying bias for

programming remains. This is consistent with Lye and Koh's (2014)

findings from their review of literature that programming is the pri-

mary medium for learning CT.

To be clear, we believe that learning to program is a useful skill,

especially in the 21st century. As computer science practitioners, we

would be delighted to see programming integrated into core subjects

to solve multidisciplinary problems. However, the reality is that pro-

gramming demands high levels of cognitive processing, which would

suit the interests only of a limited set of students. Although there are

hosts of benefits to learning to write computer programs, CT cannot

be positioned as a skill for everyone if learners need to write Ben's

code or implement Eddy and Ethan's Dijkstra algorithm to solve an

everyday problem. Rather, we must discover how computer science

practices can augment everyday problem solving, such as making deci-

sions about efficient travelling paths, arranging seats in a classroom

for easier access and less distraction, classifying books on a shelf, and

arranging booths in an exhibition fair.

We deemed it important to distinguish between following and

designing algorithms in everyday problem solving. For example, should

following the step-by-step instructions of a cooking recipe be

regarded as an algorithmic practice? In this study, the use of an algo-

rithm in solving problems was interpreted as discerning and designing

an algorithm as part of the solution, which was distinguished from fol-

lowing a given sequence in the process of problem solving. We dis-

covered that the correctness of algorithms in everyday activities is

subjective, which is consistent with Standl's (2017) finding when stu-

dents were tasked to solve the real-life challenge of packing moving

boxes. This approach is different from theoretical computing, in which

an algorithm is not just any step-by-step process but rather a series of

steps that control an abstract machine without the use of human

judgement (Denning, 2017). When an algorithm is conceived from the

theoretical lens (e.g., Dijkstra, Sort and Search algorithms), the proof

of correctness is a criterion for its validity. However, such proofs were

never the focus when students solved everyday problems; this sup-

ports the perception of CT as systems thinking through multiple vari-

ables that prioritize a holistic approach to problem solving (Weintrop

et al., 2016).

Abstraction and decomposition often overlap in problem solving

(Ezeamuzie et al. 2022). A similar investigation of everyday problem

solving found that students struggled to describe how they abstracted

and decomposed when solving a bin packing problem (Standl, 2017).

Aided by the interviews, we elicited practices that conformed to

decomposition and abstraction to solve the routing problem. How-

ever, the participants were not able to explain whether these prac-

tices were deliberate or not, and their answers mirrored Standl's

(2017) designation of them inseparable components in his modified

three steps of CT problem solving.

Decomposition is not just any random splitting of a problem;

rather, it is the act of intentionally dividing complex problems into

smaller functional parts that fit squarely into the larger system

(Shute et al., 2017). According to Wing (2008), abstraction is the

most important component of CT and was found to be the most

frequently featured dimension of CT in extant empirical studies

(Ezeamuzie & Leung, 2022). To advance the application of CT in

solving everyday problems, abstraction and decomposition should

be explicitly demonstrated using everyday examples. Pedagogical

practices that highlight and encourage learners to apply these

latent practices will increase the use of such cognition in everyday

problem solving.

1792 EZEAMUZIE ET AL.

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

This study generated valuable findings: the need to provide a bal-

ance between formal correctness and simplification in problem solv-

ing, an understanding of the latent nature of CT in problems, and the

need to provide intentional structure when presenting CT students

with everyday problems. These findings are not without limitations,

which we acknowledge herein. This investigation was based on case

studies. This entailed analysis of qualitative data which interpretations

are informed through researchers' lens and experience. Implicitly, the

risk for observation bias and subjectivity is high, impeding the general-

ization of results to the wider population. Also, the nature of the prob-

lem investigated in this study is limited and neither explains if similar

CT practices are transferable to other problem solving scenarios nor

similarity of performance with a different group. Despite these limita-

tions, we believe that we uncovered valuable qualitative information

for advancing research and practice in CT as well as computing educa-

tion. As we noted in our introductory section, this study did not aim

for a generalization of its results. Rather, it aimed to fill an obvious

gap in understanding of the nature of CT problem solving when prac-

tised without programming through close observation of learners'

practices.

Scherer (2016) recognized the precise need for empirically vali-

dated research on the transfer effect of computer programming.

Unfortunately, this need remains unmet. Although the participants

in this study participated in a programming course, we found no tan-

gible evidence to support the notion that the knowledge gained

from the lessons aided their solution of the everyday problem using

the CT approach. Nonetheless, the lessons drove the students'

‘thinking and awareness’ that they now possessed an additional

problem solving approach that could be used to solve everyday

problems, which is consistent with Standl's (2017) findings. For

example, Ben enthusiastically said, ‘If I choose to buy a product, and

there are multiple companies that provide the products, I will use CT

concepts to think which product has the best properties’. How and

when these CT concepts can be used is still largely unknown and

untested.

Based on what we unearthed about the nature of solving

everyday problems with CT and the affirmation that CT is about

conceptualizing, not programming (Wing, 2006), this study found

that CT practices are latent in everyday problems. Therefore, it is

hard for students to discover how CT can augment their ability to

solve such problems. Pedagogies that promote CT should consider

leading the learners to both discover the latent CT practices and

structure everyday problems intentionally as a valuable premise

for discovering the applicability of CT. Although algorithm, the

step-by-step approach to problem solving, is a conspicuous CT

practice for everyday problems such as route planning, decomposi-

tion and abstraction, though latent, are prominent CT components

for simplifying everyday problem solving. Future studies need to

explicitly demonstrate concrete and relatable examples of CT

application in everyday problem solving.

CONFLICT OF INTEREST

The authors declare no conflict of interest to disclose.

PEER REVIEW

The peer review history for this article is available at https://publons.

com/publon/10.1111/jcal.12720.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on

request from the corresponding author. The data are not publicly

available due to privacy or ethical restrictions.

ORCID

Ndudi O. Ezeamuzie https://orcid.org/0000-0001-8946-5709

Jessica S. C. Leung https://orcid.org/0000-0002-6299-8158

Raycelle C. C. Garcia https://orcid.org/0000-0001-9400-6566

Fridolin S. T. Ting https://orcid.org/0000-0001-7432-0187

REFERENCES

Aho, A. V. (2012). Computation and computational thinking. The Computer

Journal, 55(7), 832–835. https://doi.org/10.1093/comjnl/bxs074

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital

age skill for everyone. Learning Leading with Technology, 38(6), 20–23.
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-

12: What is involved and what is the role of the computer science

education community? ACM Inroads, 2(1), 48–54. https://doi.org/10.
1145/1929887.1929905

Bransford, J. (1993). The IDEAL problem solver: A guide for improving think-

ing, learning, and creativity (2nd ed.). W.H. Freeman.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and

assessing the development of computational thinking. In Proceedings

of the 2012 Annual Meeting of the American Educational Research Asso-

ciation (Vol. 1, pp. 1–25). AERA. http://scratched.gse.harvard.edu/ct/
files/AERA2012.pdf

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M.

(2017). Assessing elementary students' computational thinking in

everyday reasoning and robotics programming. Computers & Education,

109, 162–175. https://doi.org/10.1016/j.compedu.2017.03.001

Chiazzese, G., Arrigo, M., Chifari, A., Lonati, V., & Tosto, C. (2019). Educa-

tional robotics in primary school: Measuring the development of com-

putational thinking skills with the bebras tasks. Informatics, 6(4), 43.

https://doi.org/10.3390/informatics6040043

Çiftci, S., & Bildiren, A. (2020). The effect of coding courses on the cogni-

tive abilities and problem-solving skills of preschool children. Computer

Science Education, 30(1), 3–21. https://doi.org/10.1080/08993408.

2019.1696169

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., &

Woollard, J. (2015). Computational thinking: A guide for teachers.

https://eprints.soton.ac.uk/424545/

Dagienė, V., & Sentance, S. (2016). It's computational thinking! Bebras

tasks in the curriculum. In A. Brodnik & F. Tort (Eds.), Informatics in

schools: Improvement of informatics knowledge and perception (pp. 28–

39). Springer. https://doi.org/10.1007/978-3-319-46747-4_3

Denning, P. J. (2017). Remaining trouble spots with computational think-

ing. Communications of the ACM, 60(6), 33–39. https://doi.org/10.

1145/2998438

Denning, P. J., Tedre, M., & Yongpradit, P. (2017). Misconceptions about

computer science. Communications of the ACM, 60(3), 31–33. https://
doi.org/10.1145/3041047

Dewey, J. (1910). How we think. D.C. Heath & Company https://pure.mpg.

de/rest/items/item_2316308/component/file_2316307/content

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.

Numerische Mathematik, 1(1), 269–271. https://doi.org/10.1007/

BF01386390

EZEAMUZIE ET AL. 1793

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://publons.com/publon/10.1111/jcal.12720
https://publons.com/publon/10.1111/jcal.12720
https://orcid.org/0000-0001-8946-5709
https://orcid.org/0000-0001-8946-5709
https://orcid.org/0000-0002-6299-8158
https://orcid.org/0000-0002-6299-8158
https://orcid.org/0000-0001-9400-6566
https://orcid.org/0000-0001-9400-6566
https://orcid.org/0000-0001-7432-0187
https://orcid.org/0000-0001-7432-0187
https://doi.org/10.1093/comjnl/bxs074
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1145/1929887.1929905
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
https://doi.org/10.1016/j.compedu.2017.03.001
https://doi.org/10.3390/informatics6040043
https://doi.org/10.1080/08993408.2019.1696169
https://doi.org/10.1080/08993408.2019.1696169
https://eprints.soton.ac.uk/424545/
https://doi.org/10.1007/978-3-319-46747-4_3
https://doi.org/10.1145/2998438
https://doi.org/10.1145/2998438
https://doi.org/10.1145/3041047
https://doi.org/10.1145/3041047
https://pure.mpg.de/rest/items/item_2316308/component/file_2316307/content
https://pure.mpg.de/rest/items/item_2316308/component/file_2316307/content
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390

Ezeamuzie, N. O., & Leung, J. S. C. (2022). Computational thinking through

an empirical lens: A systematic review of literature. Journal of Educa-

tional Computing Research, 60(2), 481–511. https://doi.org/10.1177/
07356331211033158

Ezeamuzie, N. O., Leung, J. S. C., & Ting, F. S. T. (2022). Unleashing the

potential of abstraction from cloud of computational thinking: A sys-

tematic review of literature. Journal of Educational Computing Research,

60(4), 877–905. https://doi.org/10.1177/07356331211055379
Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years

old kindergarten children in a computer programming environment: A

case study. Computers and Education, 63, 87–97. https://doi.org/10.
1016/j.compedu.2012.11.016

Gagné, R. M. (1985). The conditions of learning and theory of instruction.

Holt, Rinehart and Winston.

Glaser, B. G., & Strauss, A. L. (1968). The discovery of grounded theory:

Strategies for qualitative research. Weidenfeld and Nicolson.

Glaser, B. G., & Strauss, A. L. (2017). Discovery of grounded theory: Strate-

gies for qualitative research. Routledge.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of

the state of the field. Educational Researcher, 42(1), 38–43. https://doi.
org/10.3102/0013189X12463051

Guzdial, M. (2008). Paving the way for computational thinking. Communications

of the ACM, 51(8), 25–27. https://doi.org/10.1145/1378704.1378713
Jonassen, D., Strobel, J., & Lee, C. B. (2006). Everyday problem solving in

engineering: Lessons for engineering educators. Journal of Engineering

Education, 95(2), 139–151. https://doi.org/10.1002/j.2168-9830.

2006.tb00885.x

Jonassen, D. H. (1997). Instructional design models for well-structured and

III-structured problem-solving learning outcomes. Educational Technol-

ogy Research and Development, 45(1), 65–94. https://doi.org/10.1007/
BF02299613

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educa-

tional Technology Research and Development, 48(4), 63–85. https://doi.
org/10.1007/bf02300500

Kalelioglu, F., & Gülbahar, Y. (2014). The effects of teaching programming

via scratch on problem solving skills: A discussion from learners' per-

spective. Informatics in Education, 13(1), 33–50.
Kong, S.-C., Lai, M., & Sun, D. (2020). Teacher development in computa-

tional thinking: Design and learning outcomes of programming con-

cepts, practices and pedagogy. Computers and Education, 151, 103872.

https://doi.org/10.1016/j.compedu.2020.103872

Kong, S.-C., & Lao, A. C.-C. (2019). Assessing in-service teachers' develop-

ment of computational thinking practices in teacher development

courses. In E. K. Hawthorne, M. A. Pérez-Quiñones, S. Heckman, & J.

Zhang (Eds.), Proceedings of the 50th ACM Technical Symposium on

Computer Science Education (pp. 976–982). ACM. https://doi.org/10.

1145/3287324.3287470

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability

study of the computational thinking scales (CTS). Computers in Human

Behavior, 72, 558–569. https://doi.org/10.1016/j.chb.2017.01.005
Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of com-

putational thinking through programming: What is next for K–12?
Computers in Human Behavior, 41, 51–61. https://doi.org/10.1016/j.
chb.2014.09.012

Ma, H., Zhao, M., Wang, H., Wan, X., Cavanaugh, T. W., & Liu, J. (2021).

Promoting pupils' computational thinking skills and self-efficacy: A

problem-solving instructional approach. Educational Technology

Research and Development, 69(3), 1599–1616. https://doi.org/10.

1007/s11423-021-10016-5

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C.,

Rolandsson, L., & Settle, A. (2014). Computational thinking in K-9 edu-

cation. In A. Clear & R. Lister (Eds.), Proceedings of the Working Group

Reports of the 2014 on Innovation & Technology in Computer Science

Education Conference (pp. 1–29). ACM. https://doi.org/10.1145/

2713609.2713610

Mayer, R. E. (1998). Cognitive, metacognitive, and motivational aspects of

problem solving. Instructional Science, 26(1–2), 49–63. https://doi.org/
10.1023/A:1003088013286

Melander Bowden, H. (2019). Problem-solving in collaborative game

design practices: Epistemic stance, affect, and engagement. Learning,

Media and Technology, 44(2), 124–143. https://doi.org/10.1080/

17439884.2018.1563106

Miller, L. A. (1981). Natural language programming: Styles, strategies, and

contrasts. IBM Systems Journal, 20(2), 184–215. https://doi.org/10.

1147/sj.202.0184

Nardelli, E. (2019). Do we really need computational thinking? Com-

munications of the ACM, 62(2), 32–35. https://doi.org/10.1145/
3231587

Organisation for Economic Co-operation and Development (2013). Prob-

lem-solving framework. In PISA 2012 assessment and analytical frame-

work: Mathematics, reading, science, problem solving and financial

literacy (pp. 119–137). OECD Publishing. https://doi.org/10.1787/

9789264190511-6-en

Pane, J. F., & Myers, B. A. (2001). Studying the language and structure in

non-programmers' solutions to programming problems. International

Journal of Human–Computer Studies, 54(2), 237–264. https://doi.org/
10.1006/ijhc.2000.0410

Panskyi, T., Rowinska, Z., & Biedron, S. (2019). Out-of-school assistance in

the teaching of visual creative programming in the game-based

environment—Case study: Poland. Thinking Skills and Creativity, 34,

100593. https://doi.org/10.1016/j.tsc.2019.100593

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic

Books.

Popat, S., & Starkey, L. (2019). Learning to code or coding to learn? A sys-

tematic review. Computers & Education, 128, 365–376. https://doi.
org/10.1016/j.compedu.2018.10.005

Psycharis, S., & Kallia, M. (2017). The effects of computer programming on

high school students' reasoning skills and mathematical self-efficacy

and problem solving. Instructional Science, 45(5), 583–602. https://doi.
org/10.1007/s11251-017-9421-5

Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C.

(2017). Which cognitive abilities underlie computational thinking? Cri-

terion validity of the computational thinking test. Computers in Human

Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047
Scherer, R. (2016). Learning from the past—The need for empirical evi-

dence on the transfer effects of computer programming skills [Editorial

Material]. Frontiers in Psychology, 7, 1–4. https://doi.org/10.3389/

fpsyg.2016.01390

Selby, C., & Woollard, J. (2013). Computational thinking: The developing def-

inition. University of Southampton https://eprints.soton.ac.uk/

356481/

Shen, J., Chen, G., Barth-Cohen, L., Jiang, S., & Eltoukhy, M. (2020). Con-

necting computational thinking in everyday reasoning and program-

ming for elementary school students. Journal of Research on

Technology in Education, 1–21, 205–225. https://doi.org/10.1080/

15391523.2020.1834474

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computa-

tional thinking. Educational Research Review, 22, 142–158. https://doi.
org/10.1016/j.edurev.2017.09.003

Simon, H. A. (1973). The structure of ill structured problems. Artificial Intel-

ligence, 4(3–4), 181–201. https://doi.org/10.1016/0004-3702(73)

90011-8

Simon, H. A., & Newell, A. (1971). Human problem solving: The state of

the theory in 1970. American Psychologist, 26(2), 145–159. https://doi.
org/10.1037/h0030806

Stake, R. E. (1995). The art of case study research. Sage.

Standl, B. (2017). Solving everyday challenges in a computational way of

thinking. In V. Dagienė & A. Hellas (Eds.), Informatics in schools: Focus

on learning programming (pp. 180–191). Springer. https://doi.org/10.
1007/978-3-319-71483-7_15

1794 EZEAMUZIE ET AL.

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1177/07356331211033158
https://doi.org/10.1177/07356331211033158
https://doi.org/10.1177/07356331211055379
https://doi.org/10.1016/j.compedu.2012.11.016
https://doi.org/10.1016/j.compedu.2012.11.016
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1145/1378704.1378713
https://doi.org/10.1002/j.2168-9830.2006.tb00885.x
https://doi.org/10.1002/j.2168-9830.2006.tb00885.x
https://doi.org/10.1007/BF02299613
https://doi.org/10.1007/BF02299613
https://doi.org/10.1007/bf02300500
https://doi.org/10.1007/bf02300500
https://doi.org/10.1016/j.compedu.2020.103872
https://doi.org/10.1145/3287324.3287470
https://doi.org/10.1145/3287324.3287470
https://doi.org/10.1016/j.chb.2017.01.005
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1007/s11423-021-10016-5
https://doi.org/10.1007/s11423-021-10016-5
https://doi.org/10.1145/2713609.2713610
https://doi.org/10.1145/2713609.2713610
https://doi.org/10.1023/A:1003088013286
https://doi.org/10.1023/A:1003088013286
https://doi.org/10.1080/17439884.2018.1563106
https://doi.org/10.1080/17439884.2018.1563106
https://doi.org/10.1147/sj.202.0184
https://doi.org/10.1147/sj.202.0184
https://doi.org/10.1145/3231587
https://doi.org/10.1145/3231587
https://doi.org/10.1787/9789264190511-6-en
https://doi.org/10.1787/9789264190511-6-en
https://doi.org/10.1006/ijhc.2000.0410
https://doi.org/10.1006/ijhc.2000.0410
https://doi.org/10.1016/j.tsc.2019.100593
https://doi.org/10.1016/j.compedu.2018.10.005
https://doi.org/10.1016/j.compedu.2018.10.005
https://doi.org/10.1007/s11251-017-9421-5
https://doi.org/10.1007/s11251-017-9421-5
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.3389/fpsyg.2016.01390
https://doi.org/10.3389/fpsyg.2016.01390
https://eprints.soton.ac.uk/356481/
https://eprints.soton.ac.uk/356481/
https://doi.org/10.1080/15391523.2020.1834474
https://doi.org/10.1080/15391523.2020.1834474
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1016/0004-3702(73)90011-8
https://doi.org/10.1016/0004-3702(73)90011-8
https://doi.org/10.1037/h0030806
https://doi.org/10.1037/h0030806
https://doi.org/10.1007/978-3-319-71483-7_15
https://doi.org/10.1007/978-3-319-71483-7_15

Tedre, M., & Denning, P. J. (2016). The long quest for computational

thinking. In J. Sheard & C. S. Montero (Eds.), Proceedings of the 16th

Koli Calling International Conference on Computing Education

Research (pp. 120–129). ACM. https://doi.org/10.1145/2999541.

2999542

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., &

Wilensky, U. (2016). Defining computational thinking for mathematics

and science classrooms. Journal of Science Education and Technology,

25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5
Wing, J. (2006). Computational thinking. Communications of the ACM,

49(3), 33–35. https://doi.org/10.1145/1118178.1118215
Wing, J. (2008). Computational thinking and thinking about computing.

Philosophical Transactions of the Royal Society A: Mathematical, Physical

Engineering Sciences, 366(1881), 3717–3725.
Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for

all: Pedagogical approaches to embedding 21st century problem solv-

ing in K–12 classrooms. TechTrends, 60(6), 565–568. https://doi.org/
10.1007/s11528-016-0087-7

Yin, R. K. (2018). Case study research and applications: Design and methods

(6th ed.). SAGE.

Yin, Y., Hadad, R., Tang, X., & Lin, Q. (2020). Improving and assessing com-

putational thinking in maker activities: The integration with physics

and engineering learning. Journal of Science Education and Technology,

29(2), 189–214. https://doi.org/10.1007/s10956-019-09794-8

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Ezeamuzie, N. O., Leung, J. S. C.,

Garcia, R. C. C., & Ting, F. S. T. (2022). Discovering

computational thinking in everyday problem solving: A

multiple case study of route planning. Journal of Computer

Assisted Learning, 38(6), 1779–1796. https://doi.org/10.1111/

jcal.12720

EZEAMUZIE ET AL. 1795

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1145/2999541.2999542
https://doi.org/10.1145/2999541.2999542
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1007/s11528-016-0087-7
https://doi.org/10.1007/s11528-016-0087-7
https://doi.org/10.1007/s10956-019-09794-8
https://doi.org/10.1111/jcal.12720
https://doi.org/10.1111/jcal.12720

APPENDIX

EXAMPLES OF THE TAKE-HOME PROGRAMMING TASKS

Question 1

In this exercise, the 26 letters in English will be mapped to a number.

The mapping is not case sensitive (i.e., lowercase, and uppercase of a

letter will map to the same number)

Write a Python program that will accept users' surname and cal-

culate the sum, product, and average of the characters as shown in

the letter-to-number mapping above.Example: For an input ‘Cheung’,

Sum¼CþHþEþUþNþG¼3þ8þ5þ21þ14þ7¼58

Product¼3�8�5�21�14�7¼246,960

Average¼ sum=number of character¼58=6¼9:67

Question 2

In cryptography, we hide and distort messages so that adversaries or

third parties cannot understand our communication with a trusted

partner.

Write a program that can encrypt and decrypt a message by

swapping every character with the fifth letter (e.g., a à f, b à g,

u à z, w à b). The characters are non-case sensitive (i.e., uppercase

and lowercase characters will be treated as the same). Numbers and

other special characters will remain unchanged.A B C D E F G H I J K L M

1 2 3 4 5 6 7 8 9 10 11 12 13

N O P Q R S T U V W X Y Z

14 15 16 17 18 19 20 21 22 23 24 25 26

1796 EZEAMUZIE ET AL.

 13652729, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12720 by U

niversity of H
ong K

ong, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

	Discovering computational thinking in everyday problem solving: A multiple case study of route planning
	1 INTRODUCTION
	2 THEORETICAL FRAMEWORK
	2.1 Computational thinking
	2.2 The nature of problem solving
	2.3 CT approach to problem-solving
	2.3.1 Problem solving as a learning outcome
	2.3.2 CT as the operationalized learning outcome

	2.4 CT in everyday activities

	3 METHODOLOGY
	3.1 Multiple case study of a routing problem
	3.2 Context
	3.3 Learning activities and material
	3.4 Participants and case selection
	3.5 Data collection
	3.5.1 Open-ended CT tasks
	3.5.2 Class observation and follow-up interviews

	3.6 Data analysis

	4 RESULTS
	4.1 Summarizing the problem solving of the cases
	4.2 Cross-case analysis: CT practices in everyday problem solving
	4.2.1 Decomposition
	4.2.2 Abstraction
	4.2.3 Algorithm-A derivative of pattern recognition and automation

	4.3 Cross-case analysis: Features of everyday problem solving
	4.3.1 Simplification trumps formal proof of correctness in everyday problem solving
	4.3.2 Structuring and restructuring of problems increases the applicability of CT
	4.3.3 Everyday problem solving encompasses latent CT practices

	4.4 Decontextualizing everyday problem solving with CT from programming

	5 DISCUSSION
	CONFLICT OF INTEREST
	PEER REVIEW
	DATA AVAILABILITY STATEMENT

	REFERENCES
	APPENDIX
	EXAMPLES OF THE TAKE-HOME PROGRAMMING TASKS
	Question 1
	Question 2

