
Original Research Article

Journal of Educational Computing
Research
2022, Vol. 0(0) 1–34
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/07356331221134423
journals.sagepub.com/home/jec

Abstractive-Based
Programming Approach to
Computational Thinking:
Discover, Extract, Create, and
Assemble

Ndudi O. Ezeamuzie

Abstract
Most studies suggest that students develop computational thinking (CT) through
learning programming. However, when the target of CT is decoupled from pro-
gramming, emerging evidence challenges the assertion of CT transferability from
programming. In this study, CT was operationalized in everyday problem-solving
contexts in a learning experiment (n = 59) that investigated whether learning pro-
gramming enhances students’ CT skills. Specifically, this study examined the influence
of a novel, systematic and micro instructional strategy that is grounded in abstraction
and comprised of four independent but related processes – discover, extract, create,
and assemble (DECA) towards simplification of problem-solving. Subsidiary questions
explored the effects of students’ age, gender, computer proficiency, and prior pro-
gramming experience on the development of CT. No significant difference was found
between the CT skill and programming knowledge of the groups at the posttest.
However, within-group paired t-tests showed that the experimental group that in-
tegrated DECA had significant improvement in CT but not in the control group across
the pretest-posttest axis. Implications of the inconclusive finding about the transfer of
programming skills to CT are emphasized and the arguments for disentangling CT from
programming are highlighted.

Faculty of Education, University of Hong Kong, Hong Kong

Corresponding Author:
Ndudi O. Ezeamuzie, Faculty of Education, University of Hong Kong, RunMe Shaw Building, Hong Kong.
Email: amuzie@connect.hku.hk

https://us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/07356331221134423
https://journals.sagepub.com/home/jec
https://orcid.org/0000-0001-8946-5709
mailto:amuzie@connect.hku.hk
http://crossmark.crossref.org/dialog/?doi=10.1177%2F07356331221134423&domain=pdf&date_stamp=2022-10-26


Keywords
computational thinking, problem-solving, programming, abstraction, constructionism

Introduction

Wing (2006) described computational thinking (CT) as ‘thinking like a computer
scientist’ that everyone can harness to solve problems (p. 34). Understandably, the
claim that CT enhances problem-solving is a goal that resonates with every educator,
which Jonassen (2000) described as ‘the most important learning outcome for life’
(p. 63). To achieve the goal of raising CT problem solvers and developing
technology-aware citizens, one literacy that has dominated the learning ecosystem is
computer programming (Ezeamuzie & Leung, 2022). Although CT was explicitly
distinguished as ‘conceptualizing, not programming’ (Wing, 2006, p. 35), the reviews
on CT practices showed that programming remains the primary approach for de-
veloping and assessing CT (Ezeamuzie & Leung, 2022; Lye & Koh, 2014).

Whereas Wing’s (2006) comparison of CT to time-honoured literacies of reading,
writing, and arithmetic is open to scholarly debates, several positive outcomes have
been reported in CT and programming empirical studies. In a meta-analysis (Scherer
et al., 2019), learning programming enhances students’ CT and cognitive skills such as
reasoning, creativity, metacognition, mathematical thinking, and natural language
literacy. Other benefits of CT include enhancement of social skills, self-management,
collaboration, communication, and confidence (Denner et al., 2019; Popat & Starkey,
2019). These benefits spread across all levels of learners including early childhood
education (Bers et al., 2014).

However, the heightened benefits of learning CT through programming (e.g.,
Denner et al., 2019; Popat & Starkey, 2019; Scherer et al., 2019) contrast with the
antecedents of studies on the cognitive benefits of programming. Impressions that
learning programming enhances generic and transferrable problem-solving skills are
unsubstantiated (Guzdial, 2015; Pea & Kurland, 1984). According to Denning (2017),
there is no evidence to support the claim of learning transfer in programming. These
disparities evoke questions about what has changed in programming. Does learning to
program augment the development of CT skills?

To gain clarity on this question, this study reports an experiment in a middle school
classroom that investigated the effects of abstractive-based programming – an in-
structional strategy that mirrors the inherent nature of abstraction. The abstractive-
based model consists of four independent but connected activities – discover, extract,
create, and assemble (DECA) depicting various ways abstraction has been im-
plemented in CT (Ezeamuzie, Leung, & Ting, 2022). By adopting an instructional
strategy that originated from the inherent nature of CT, the hypothesis guiding this
asserts that learning programming with explicit DECA instruction enhances the transfer
of skills to CT.

2 Journal of Educational Computing Research 0(0)



Background

This section establishes the meaning of CT and overviews the literature to elucidate the
influence of programming on learners’ cognitive skills and CT. Specifically, the effects
of the diverse modelling of CT assessments are analysed. The theoretical framework is
expounded to illustrate DECA, an abstractive-based programming strategy and the
operationalization of CT through Programme for International Student Assessment
(PISA). Finally, the research questions are highlighted explicitly.

Computational Thinking

The call for CT emerged from the assumption that the ways computer scientists think
are transferable in solving problems beyond the boundaries of computer science (Wing,
2006). While Wing (2006) was a significant moment in the CT discussion, other
accounts exist from historical lens (Tedre & Denning, 2016). Notably, Alan Perils’ call
for programming in the liberal arts, (Guzdial, 2008), Donald Knuth’s view of how
programming strengthens conceptual clarity (Knuth, 1974) and Seymour Papert’s idea
of learning by doing when children program (Papert, 1980). Some studies have
criticizedWing’s (2006) framing of CTas overly broad (Mannila et al., 2014) and many
frameworks have been proposed to conceptualize CT. These include CT conceptual
models by Computing at School (Csizmadia et al., 2015), International Society for
Technology in Education (Barr et al., 2011; Barr & Stephenson, 2011), and others (e.g.
Brennan & Resnick, 2012; Korkmaz et al., 2017; Selby &Woollard, 2013; Shute et al.,
2017; Weintrop et al., 2016).

There is neither consensus nor shortage of interpretations for CT. While a consensus
model of CT may be desirable for learning and assessment, Nardelli (2019) advised
against such mapping and suggested that CT should be interpreted ‘as a shorthand’ of
computer science for all students (p. 32). A systematic review of literature by
Ezeamuzie and Leung (2022) found that most studies that assessed the development of
CT implemented CT as the composite of programming concepts and preferred models
that originated from assessment instruments. Moreover, a substantial number of CT
studies had no clear difference between CT and programming (Ezeamuzie & Leung,
2022; Lye & Koh, 2014). To avoid narrow views about CT (Denning et al., 2017) and
exaggerated claims about CT (Tedre & Denning, 2016), this study adopts the meaning
of CT from Wing’s (2006) description of CT as thinking like a computer scientist but
decontextualized from programming.

Programming and Transfer of Cognitive Skills

Arguments about learning programming and the transfer of problem-solving to other
domains are inconsistent. For example, in the 20th century, Pea and Kurland (1984)
examined the impact of learning programming on learners’ development of higher-
order cognitive skills and found that existing evidence failed to support the claims of

Ezeamuzie 3



transfer. However, a meta-analysis by Liao and Bright (1991), comprising 432 effect
sizes in 65 studies showed that learning programming improves students’ cognitive
ability moderately (d = .41). The updated meta-analysis comprising 86 effect sizes in
22 studies found a strong transfer effect (d = .76) between programming and learners’
cognitive abilities (Liao, 2000).

The inconclusive nature of transfer effects has persisted across the 21st century.
According to Guzdial (2015), the assertion that learning to program will improve
generic problem-solving skills has not been substantiated. In examining the contentious
issues on CT, Denning (2017) advised against blind acceptance that learning to program
will enhance learners’ CT problem-solving abilities and challenged educators to
empirically verify the unsubstantiated claims. In contrast, some studies asserted that
learning to program enhances CT. For example, in a meta-analysis on the transfer effect
of programming on cognitive skills, Scherer et al. (2019) analysed 105 interventions
with 539 effect sizes. They separated the cognitive outcomes into near-transfer and far-
transfer; a classification that reflects in finer granularity the distance of the cognitive
skills from programming. Near-transfer denoted the class of outcomes when pro-
gramming skills were assessed. Far-transfer represented other cognitive outcomes such
as reasoning, mathematical skills, spatial skills, metacognition, and creativity. Scherer
et al. (2019) found a strong and moderate effects in near transfer (g = .75) and far
transfer (g = .47), respectively.

Based on the findings of their meta-analysis, Scherer et al. (2019) asserted that “the
overall claims that programming aids other forms of thinking skill can therefore be
substantiated” (p. 783). Though an interesting finding in the prevailing arguments of
transfer, Scherer et al.’s (2019) classification of CT as a near transfer skill (i.e., part of
the programming knowledge) instead of the far-transfer, contradicts Wing’s (2006)
position on CT as ‘conceptualizing, not programming’ (p. 35). This contradiction is
consistent with the findings in Ezeamuzie and Leung (2022) that many empirical
studies did not distinguish between CT and programming. Whereas CT is rooted in
computer science concepts (including programming concepts), the CT skills ex-
pounded in Wing (2006) entail using computer science concepts to solve problems that
are decontextualized from programming.

Transfer of Computational Thinking Confounded by Nature of Assessment

The close association between programming and CT assessment is evident from the
instruments that researchers have adopted in empirical studies (Ezeamuzie & Leung,
2022). For instance, in Merkouris et al. (2017), secondary school students’ ability to
read and understand program codes was the underlying skill in the assessment of the
influence of robotics and wearables on CT. Also, CTassessment instruments such as Dr
Scratch (Moreno-León et al., 2015) and CT-test (Román-González et al., 2017) are
interweaved in programming. Dr Scratch assigns CT scores by counting programming
features in Scratch projects, which reflect students’ code writing ability. Similarly, CT-
test consists of 28 multiple choice questions designed as code.org program snippets for

4 Journal of Educational Computing Research 0(0)

http://code.org


testing knowledge of sequence, loops, conditionals, and functions through code
reading. Hence, studies that measured CTwith Dr Scratch (e.g., Wei et al., 2021; Zhao
et al., 2022) and CT-test (e.g., Pérez-Marı́n et al., 2020; Taylor &Baek, 2019) are rooted
in programming knowledge.

Another assessment approach is self-reports. Technically, the self-reports measure
CT disposition rather than skill development. The CT-scale by Korkmaz et al. (2017) is
an example of a self-reporting instrument that measures CT disposition by aggregating
scores in five dimensions – creativity, algorithmic thinking, critical thinking, problem-
solving, and cooperativity. Studies that adopted CT-scale (e.g., Lee & Lee, 2021;
Saritepeci, 2020) require learners to select their disposition from a 5-point Likert scale
ranging from never (1) to always (5). Items such as “I like the people who are sure of
most of their decisions” (Korkmaz et al., 2017, p. 565) demonstrate dispositions and
beliefs.

Besides programming-enabled instruments and self-reports, other forms of CT
assessments illustrate how CT is detached from programming. In Bebras, each task is
designed to measure one or more of the sub-CT skills of abstraction, algorithms,
decomposition, evaluation, and generalisation (Dagienė & Sentance, 2016). Using
Bebras, neither code writing nor code reading was required in assessing the influence of
robotics programming on primary schoolers’ CT skills (Baek et al., 2019; Noh & Lee,
2020). Modelling CT assessments after real-life scenarios to measure students’ ability
to transfer algorithmic and logical flow to dissimilar contexts is another approach. For
instance, in assessing CT, Witherspoon et al. (2017) probed students’ understanding of
autonomous car designs and the application of sensors in tracking vehicular capacity on
a bridge after a robotic programming intervention. Other assessments combined both
programming tasks with everyday problem-solving tasks (Chen et al., 2017; Shen et al.,
2020).

The multi-faceted approach to CT assessment demands that outcomes of studies
should be interpreted with caution. The highlighted differences in assessments suggest
that significant outcomes in empirical interventions are not sufficient; it is equally
important to verify what was measured. In this study, CT is decoupled from pro-
gramming and aligned with everyday problems in the well-validated PISA instrument
to gain clarification on whether learning programming enhances CT skills.

Programme for International Student Assessment: Operationalizing
Computational Thinking

The Programme for International Student Assessment (PISA) by the Organisation for
Economic Co-operation and Development (OECD, 2013a) is adopted for assessing CT
ability in this study. PISA looks beyond school subject knowledge to measure the
ability of 15-year-old students to apply their knowledge and skill in solving real-life
problems. Undeniably, what constitutes problem-solving is complex and amorphous,
especially when loosely associated with a wide variety of tasks in education. Although
it is theoretically difficult to frame the dimensions of problem-solving, several models

Ezeamuzie 5



provide insight into the nature of problems. For example, problems may be classified
into well-structured or ill-structured (Jonassen, 1997) and routine or non-routine
(Mayer, 1998). To account for the shortfalls of these dichotomous classifications,
Jonassen (2000) modelled problems in terms of structuredness, complexity, and domain
specificity. Concerning CT, everyday problems mask the implementation of CT
practices; requiring intentional restructuring of problems to make the application of CT
explicit (Ezeamuzie, Leung, Garcia, et al., 2022). PISAwas adopted because it focuses
on what students do with their knowledge in solving everyday problems, which is
consistent with the purpose of CT – a problem-solving skill (Wing, 2006).

Established in 1997, the PISA survey is a triennial programme that measures
students’ abilities in three major domains of reading, mathematics, and science. With
the first edition in 2000, PISA 2012 was the fifth cycle of PISA and was conducted in
66 countries/economies with mathematical literacy as the focal domain (OECD,
2013a). Mathematical literacy represents an individual’s capacity to use mathemati-
cal concepts, procedures, facts, and tools to describe, explain and predict phenomena.
By reasoning mathematically, individuals make well-founded judgments and decisions
(OECD, 2013b). Succinctly, mathematics literacy is distinguished from isolated
knowledge of mathematics concepts but emphasizes problem-solving that applies
domain-based knowledge in real-life challenges. Figure 1 shows the mathematical
literacy framework situated in real-life problem-solving contexts and framed under
three dimensions: content, process, and context

Figure 1. Problem-solving in the PISA 2012 mathematical literacy framework. This figure is
reproduced from (OECD, 2013b).

6 Journal of Educational Computing Research 0(0)



Content dimension of the framework represents the mathematical knowledge do-
main of the problem scenario. PISA 2012 adopted the historical structure of mathe-
matics since the 17th century in four broad areas – change and relationship, quantity,
space and shape, and uncertainty and data. Process dimension sums up the mathe-
matical actions that are required to solve problems in diverse contexts in three
approaches – formulating, employing, and interpreting. Formulating provides structure
by translating the problems from the semantics of the real world to a mathematical
structure, expressions, or equations. Employing entails solving problems by applying
arithmetic computations and solving equations. Interpreting involves evaluating
mathematical arguments to make a reasoned inference about problems. Context di-
mension describes the domain where the problem is situated. While this list of contexts
is inexhaustive, PISA 2012 identified four areas of problem-solving. Occupational
context depicts the category of problems that people encounter at work. Personal
context refers to issues and challenges that affect individuals, homes, and relatives.
Societal context identifies problems that are situated in local and global communities
such as government services and educational policies. Scientific context focuses on
science and technological issues of nature such as weather change, genetics, and
biodiversity.

Abstractive-based Instruction: Discover, Extract, Create, and Assemble
(DECA)

In this study, an instructional strategy that mirrors the inherent nature of abstraction in
CT is adopted for examining the effects of programming on CT. Abstraction is the
root of breakthroughs in computer science (Colburn & Shute, 2007; Kramer, 2007)
and a regular dimension in most CT frameworks. Analysis of the operational models
of abstraction revealed four independent but connected activities – discover, extract,
create, and assemble (DECA) that depicts various ways of implementing abstraction
in CT (Ezeamuzie et al., 2022). Figure 2 shows that abstraction is not restricted to
specific set of activities but the summation of cognitive activities with the primary
goal of simplifying problem-solving. In the DECA abstractive-based model, students
reflect on the programming problems to understand the applicable solutions.Discover
examines entities or the operation of a process to uncover underlying patterns. Extract
focuses on distinguishing between irrelevant, redundant, and relevant features.
Create synthesizes generic classification rules based on the pattern for automation.
Assemble combines the relevant feature and common pattern systematically to form a
functional unit.

Research Question

RQ 1. Does abstractive-based learning of programming enhance students’ CT?

Ezeamuzie 7



RQ 2. Does abstractive-based learning of programming enhance students’ pro-
gramming knowledge?
RQ 3. Are there any interaction effects of abstractive-based programming and
students’ characteristics (age, computer proficiency, prior programming experience,
gender) towards CT and programming knowledge?

Method

A quantitative experimental design was adopted in this study. Participants were selected
and assigned to the experimental and control groups, randomly. Data were collected at
various stages of the experiment through questionnaires and tests.

Figure 2. Summary of the core activities and purposes of abstraction (Ezeamuzie et al., 2022).

8 Journal of Educational Computing Research 0(0)



Participants

An invitation to join the study was sent to five secondary schools in a suburban city in
West Africa. These schools were selected because CT research in developing countries
is scarce and programming education is hugely missing in their classrooms
(Ezeamuzie, 2022). By situating this investigation among participants from unrep-
resented regions, this study seeks to uncover peculiar prospects and challenges in
technology-deprived schools. Schools were deemed eligible to join this intervention if
they accepted the invitation and have a functional computer lab with minimum of
30 computers that are provisioned to support online classes. While the schools ex-
pressed interest to join the learning intervention, they were unable to meet the re-
quirements. One of the secondary schools with 31 computers was funded to set up an
internet connection and stable power supply throughout the 10-week learning period.
The selected school runs co-educational training and has a total student population of
about 1200 students across the six grades. The 180 science students in the fourth and
fifth years of secondary school (equivalent to grades 10 and 11 in the K–12 system)
were invited to join this study before their long-term holiday (equivalent to the summer
holiday). As approved by the institutional review board, students and parental consent
were obtained before the study. Table 1 shows the summary of the participants. More
than 70% of the participants in this study had no prior programming experience. Also,
about 68% of the participants were between 14 and 16 years, matching the PISA
instrument for 15-year-old students’ everyday problem-solving (OECD, 2016).

Experimental and Control Groups

The experimental and control groups were distinguished by the infusion and with-
drawal of the DECA, respectively. For the experimental group, the instructor promoted
the application of DECA in the learning instructions and explicitly encouraged students
to apply them in solving the programming tasks. For the control group, DECA was
withdrawn and never highlighted in the instructions. All other conditions including the
learning activities, direct instructions, scaffolding, and learning material were the same
for both the experimental and control groups. For clarity, DECA is a localized strategy
for solving problems and not a standalone pedagogical approach and can be infused
into other instructional strategies.

Table 2 shows how DECA was implemented in the experimental group through
worked example designed with a turtle (a module for drawing in Python) in drawing
a cube. With the overarching aim of simplifying problem-solving, discover shows the
underlying pattern as a component of two squares, four slanted lines and one circle.
Extract examines the patterns for both relevant and irrelevant features. In this
scenario, the circle was regarded as an irrelevant feature because the target is to draw
a cube. Create enables the discovered patterns to be automated such as designing
functions for drawing squares. Assemble represents how the patterns are combined
systematically. By discovering patterns and extracting relevant features, learners

Ezeamuzie 9



Table 1. Summary of the Profiles of the Participants.

Participants Characteristics
Experimental Group n

(%)
Control Group n

(%)
Total n
(%)

Enrolment 31 28 59
Gender
Female 7 (23) 11 (39) 18 (31)
Male 24 (77) 17 (61) 41 (69)

Age
Less than 14 years 3 (10) 4 (14) 7 (12)
14 – 16 years 23 (74) 17 (61) 40 (68)
Greater than 16 years 5 (16) 7 (25) 12 (20)

Computer-use proficiency
Never used 1 (3) 1 (2)
Novice 11 (35) 8 (29) 19 (32)
Intermediate 11 (35) 15 (54) 26 (44)
Advanced 5 (16) 4 (14) 9 (15)
Expert 3 (10) 1 (4) 4 (7)

Access to computersa

Personal 9 (29) 12 (43) 21 (36)
Parent 8 (26) 11 (39) 19 (32)
Sibling 5 (18) 5 (8)
School 18 (58) 13 (46) 31 (53)

Prior programming experience
Yes 7 (23) 10 (36) 17 (29)
No 24 (77) 18 (64) 42 (71)

Prior programming duration
None 24 (77) 17 (61) 41 (69)
Less than 1 year 4 (13) 11 (39) 15 (25)
1 – 2 years 3 (10) 3 (5)

Prior programming environmenta

None 26 (84) 18 (64) 44 (75)
Arduino 3 (10) 6 (21) 9 (15)
Scratch 2 (6) 2 (7) 4 (7)
Python 1 (3) 1 (2)
Java 1 (3) 1 (2)
C++ 1 (4) 1 (2)
JavaScript 1 (4) 1 (2)

Prior programming learning methoda

Self-learning 4 (13) 4 (14) 8 (14)
School 4, (13) 5 (18) 9 (15)
Tutoring centre 3 (11) 3 (5)
Home 2 (7) 2 (3)

(continued)

10 Journal of Educational Computing Research 0(0)



Table 1. (continued)

Participants Characteristics
Experimental Group n

(%)
Control Group n

(%)
Total n
(%)

None 24 (77) 15 (54) 39 (66)
Completed intervention and
assessments

20 (65) 25 (89) 45 (76)

The percentage (%) is rounded to whole number and the total may not round to 100.
aThe values for the participants’ characteristics are not mutually exclusive.

Table 2. Application of Discover, Extract, Create, and Assemble (DECA) in a Worked
Example.

Ezeamuzie 11



focused on how to write codes for drawing a square and lines instead of a composite
shape. The assembling activity drew from learners’ knowledge of geometry for
finding the length and angle of inclination of the lines and mapping the coordinates of
the square.

Table 3. Summary of Students’ Target Programming Projects (Ezeamuzie, 2022).

12 Journal of Educational Computing Research 0(0)



Learning Activities and Resources

Constructionism was the preferred setting for all participants; challenging students to
learn by doing. Although constructionism was the driving theory, all participants
received direct instructions and scaffolding to support their learning. Appropriate
learning goals were established for every lesson in the form of programming projects
(see Table 3). By working towards the targets, students explored the intertwined re-
lationships between programming concepts and different paths to solving problems. At
the beginning of each class, the instructor simulated the day’s programming project
without revealing the source code. This helped students understand the problems they

Figure 3. The research design and procedure.

Ezeamuzie 13



would have to solve at the end of the class. Then, the instructor presented 1 – 2 mini-
tasks that used similar concepts as worked examples. Students wrote codes to create
different shapes and solve problems as assigned. Considering students’ academic level,
their prior exposure to programming, and the technical limitations of the settings,
Python was selected as the programming language for the learning intervention. Turtle,
a standard educational module in Python that is modelled after the Logo programming
language for introductory programming, was used in some of the sessions.

Research Procedure

The learning intervention comprised of 2-hour weekly lessons that lasted for 10 weeks
in the first term of the academic year. Randomization of groups was implemented
through online enrolment for the after-school programming course. Students selected a
preferred lesson day of either Tuesday or Thursday. Once the quota for any class day

Table 4. Distribution of Selected Items by PISA 2012 Analytical and Assessment Framework.

Dimension Count Credit Question

Process
Employ 3 6 13, 18,21
Formulate 3 6 6, 19, 20
Interpret 5 10 1, 2, 7, 11, 12

Item type
Constructed response 7 14 1, 7, 11, 12, 19, 20, 21
Multiple choice 4 8 2, 6, 13, 18

Figure 4. Penguin: sample question from PISA 2012.

14 Journal of Educational Computing Research 0(0)



was reached, new registrants were asked to join another class if quota permits. The
quota for each group was limited to 31 students; the number of internet-enabled
computers in the computer lab. To avoid placebo effects, the nature of training or
manipulation was concealed from participants.

A Virtual flipped learning setting was adopted for the after-school training. In the
first week, the instructor explained the aims of the lessons including the schedule,
duration and rights to join or decline participation. After the brief introduction, students
took part in an hour-long online pre-test. Participants attended four online lessons on
the second, fourth, sixth, and eighth week respectively via Zoom (a group video-
conferencing application; https://zoom.us/). For the third, fifth, seventh and ninth
weeks, programming tasks were assigned to the participants for self-learning and

Figure 5. Faulty players: sample question from PISA 2012.

Ezeamuzie 15

https://zoom.us/


practice. The 10th week was dedicated to an hour-long online post-test. Figure 3 shows
the summary of the research design and procedure.

Data Collection

Three instruments – demographic questionnaire, CT assessment and programming
knowledge assessment constituted the primary data collection instruments. These
instruments were administered at various stages of the experiment using Qualtrics (an
online survey solution; https://qualtrics.com). Each participant was assigned a unique
ID during registration, which was used to track and collate their pretest and posttest
results for analysis.

Demographic questionnaire. A simple questionnaire was administered to capture basic
demographic data (e.g., age, gender), computer proficiency and prior programming
experience of the participants. Participants completed the questionnaire before the
commencement of the study (see Supplementary 1, available from the author and in the
Online version)

Computational thinking assessment. PISA drew from the massive experience of testing
centres and a large pool of experts to design test items focused on problem-solving
within the mathematical literacy framework that reflects on real-life challenges and
situations. Items in PISA were selected from pools that were piloted in all the par-
ticipating countries (OECD, 2014). To build the pool of items, participating national
centres submitted sample test items, totalling about 500 items, which were subjected to
rigorous checks including national item review, international item review, refining by
testing centres and reviewing by Mathematics and Problem-Solving Expert Groups.
Items were selected if they have good psychometric properties, had no coding issues in
field trials, were rated high by national centres, aligned to the domain, and item
difficulties were well distributed. Based on the item response theory, PISA has excellent
reliabilities as follows: overall (α = .914), employing (α = .909), formulating (α = .892),
and interpreting (α = .897). Amongst the 110 mathematics items in PISA 2012 final
pool, 26 items were released (OECD, 2014) and a subset of 11 items were adopted for
the pre-test and post-test. Table 4 shows the distribution of the CT items in the pre-test
and post-test. The full test is available as Supplementary 2 (available from the author

Table 5. Distribution of Items in the Programming Knowledge Assessment.

Programming Type Count Unscaled Credit Question

Code writing 3 12 5, 10, 16
Code reading
Constructed response 4 8 4, 9, 15, 17
Multiple choice 3 3 3, 8, 14

16 Journal of Educational Computing Research 0(0)

https://qualtrics.com/
https://journals.sagepub.com/doi/suppl/10.1177/07356331221134423
https://journals.sagepub.com/doi/suppl/10.1177/07356331221134423


and in the Online version). Following PISA’s rubric for grading, maximum score of
2-points was assigned for correct answers, 1-point for a partially correct answer and
none for other responses. Figures 4 and 5 are sample questions from PISA 2012 on
penguin reproduction habits and faulty video and audio players, respectively.

The penguin reproduction habit (Figure 4) requires students to compare and convert
the weights of two eggs, which fits into the quantity content dimension. In context, it
deals with the issue of population growth and biodiversity and is classified as scientific.
On the process dimension, it fits the employing practice, which requires applying

Table 6. Interrater Reliability Matrix Using the Intraclass Correlation Coefficient.

Dimension Pretest Posttest

Computational Thinking .991 .996
Employ .990 1.000
Formulate 1.000 1.000
Interpret .974 .985

Programming .993 .987
Code writing .983 .968
Code reading (constructed response) .990 .983
Code reading (multiple choice) 1.000 1.000

Table 7. Data Analysis by the Research Questions, the Statistical Test, Stage of Data Collection
and Participants Groups.

Research Question Statistical Test
Stage of Data
Collection

Participants’
Group

Equality of groups at baseline Independent
t-test

Pretest Control,
experimental

RQ 1 - the effect of abstractive-based
programming on CT

Independent
t-test

Posttest Control,
experimental

Paired t-test Pretest,
posttest

Control

Paired t-test Pretest,
posttest

Experimental

RQ 2 - the effect of abstractive-based
programming on programming
knowledge

Independent
t-test

Posttest Control,
experimental

Paired t-test Pretest,
posttest

Control

Paired t-test Pretest,
posttest

Experimental

RQ 3 - the interaction effects of
abstractive-based programming and
students’ characteristics

Two-way
ANOVA

Posttest Control,
experimental

Ezeamuzie 17



mathematical formulas to calculate the percentage. The correct answer of 41% (option C)
received the 2 maximum points. Other responses were graded 0.

The faulty video and audio players’ question (Figure 5) is a problem one will expect
in the manufacturing industry. This question requires students to comprehend statistical
data and interpret probability statements. Since it requires manipulating uncertainty, it
maps to the uncertainty and data in the content dimension. Context is occupational as it
deals with issues facingmanufacturers. On the process dimension, it fits the formulating
practice because it requires creating mathematical models to validate or refute the
claims. The correct answer in the order of ‘No, No, Yes’ received the 2 maximum
points. Other responses were graded 0.

Programming knowledge assessment

Programming knowledge was classified into procedural or strategic knowledge (Lau &
Yuen, 2009). Procedural knowledge (code reading) deals with comprehension of
syntax/semantics and interpretation of program logic. Items in the procedural category
required either selecting from multiple choices or constructed responses. Strategic
knowledge (code writing) entails putting the pieces of program concepts together to
achieve a specific goal through writing codes. Each item posed a problem scenario and
tasked participants to develop a written program solution. Three questions that require
writing a Python program were selected for this study from a pool of 15 programming
tasks that were piloted with students of similar age grades (Ezeamuzie, 2022). Items
were designed to assess participants’ programming knowledge within the content area
covered in the learning intervention.

Figure 6. Boxplot of pretest code writing depicting three outliers in the control group.

18 Journal of Educational Computing Research 0(0)



Each of the selected tasks requires between 4 – 10 minutes for students to write a
complete programmatic solution. Isomorphic representations of the three programming
tasks were created to probe whether problem-solving through code reading and code
writing have different influences on performance. Also, understand the impact of
multiple-choice solutions and constructed responses on procedural programming
knowledge. With the isomorphic representation of the three questions, 10-item pro-
gramming tasks were adopted for measuring participants’ programming knowledge.
Table 5 shows the distribution of the programming task items in the pre-test and post-
test. The test items are available as Supplementary 2. The multiple-choice option
received one point for correct answers and zero for wrong responses. For the code
reading tasks with a constructed response, two points were awarded for correct answer,
one point for a partially correct answer and zero for the incorrect responses. The code
writing tasks were assigned a maximum of four points based on the following criteria –
(a) two points for the correct logic (b) one point for correct output or displaying
implementation, and (c) one point for correct syntax and application of variables.

Data Analysis

The researcher and the technology teacher graded the students programming and CT
responses independently. The intraclass correlation coefficient (Shrout & Fleiss, 1979),
an effective approach for measuring interrater reliability for continuous data was
computed. Table 6 shows the intraclass correlation coefficients of CT ability and
programming knowledge. With the high consistency between the researcher’s and
technology teachers’ ratings (p < .001), the effective scores were computed as the
average of the graded score.

Table 7 shows the mapping of data analysis by the research questions, the statistical
test, stage of data collection and participant groups.

Results

Outliers, Homogeneity of Variance and Normal Distribution of Data

To use ANOVA and t-test, the data were tested for parametric conditions of equality of
population variance across the various groups and normally distributed data in each

Table 8. Posttest of Computational Thinking: Mean, Standard Deviation and Mean Difference.

Experimental Control

Mean Diff t pN M SD N M SD

Computational thinking 20 10.450 5.8869 22 10.364 4.1581 .0864 .055 .956
Employ 20 3.50 2.14 22 2.55 1.654 .955 1.626 .112
Formulate 20 1.90 1.651 22 1.55 1.625 .355 .701 .487
Interpret 20 5.050 2.8695 22 6.273 2.2078 �1.2227 �1.556 .128

Ezeamuzie 19

https://journals.sagepub.com/doi/suppl/10.1177/07356331221134423


group of the independent variables. Also, the dependent variables were on a continuous
scale and each case was observed independently. Data were also observed for outliers in
the following dependent variables. Signs of outliers emerged from the pretest pro-
gramming knowledge and were further investigated. Figure 6 shows three outliers on
pretest code writing (M = 2.067, SD = 3.0125). The outlier data points (15, 38, and 20)
have scores of code writing values of 8.5, 11, and 11.5, respectively depicting that the
three participants’ code writing abilities were not at the same baseline as the
group. They were excluded from data analysis.

Equality of Groups at Pretest: Computational Thinking and
Programming Knowledge

Establishing whether the control and experimental groups are equal at the baseline is a
prerequisite for experimental study. Using an independent t-test with two levels of
learning group factor (experimental and control), the pretest score of the participants’
CT and programming knowledge were analysed. At the p < 0.05 level, no significant
difference was observed between the control and experimental groups in the overall CT

Table 9. Posttest of Programming Knowledge: Mean, Standard Deviation and Mean Difference.

Experimental Control
Mean
Diff T pN M SD N M SD

Programming 20 9.875 7.5601 22 10.818 7.4858 �.9432 �.406 .687
Code writing 20 4.125 3.9930 22 4.250 4.1483 �.1250 �.099 .921
Code reading
(constructed response)

20 4.100 2.9540 22 4.523 2.9052 �.4227 �.467 .643

Code reading (multiple
choice)

20 1.65 1.137 22 2.05 1.174 �.395 �1.107 .275

Table 10. Paired Samples Test and Mean Difference Between Posttest and Pretest Scores.

Experimental Control

Mean Diff SD P Mean Diff SD p

Computational Thinking 1.5500 3.2803 .048 1.4318 4.5179 .152
Employ 1.200 1.642 .004 �.045 2.149 .922
Formulate .100 1.373 .748 .364 1.590 .296
Interpret .2500 1.5087 .468 1.1136 2.6679 .064

Programming 4.2250 6.3339 .008 6.2273 6.8378 .000
Code writing 2.7500 2.8074 .000 2.6818 3.4280 .001
Code reading (constructed response) 1.3250 2.9122 .056 2.7727 3.0812 .000
Code reading (multiple choice) .150 1.309 .614 .773 1.412 .018

20 Journal of Educational Computing Research 0(0)



(t (40) = .024, p = .981), employ (t (40) = .460, p = .648), formulate (t (40) = �1.262,
p = .214), and interpret (t (40) = .491, p = .626). Also, no significant difference was
observed between the control and experimental groups in the overall programming
knowledge (t (40) = �.730, p = .470), code writing (t (40) = .300, p = .766), code
reading in constructed response (t (40) = �1.421, p = .163), and code reading in
multiple-choice questions (t (40) = �.723, p = .474). Therefore, the control and ex-
perimental groups were deemed to have similar CT ability and programming
knowledge at baseline.

Posttest of Computational Thinking

An independent t-test with two levels of learning group (experimental and control) was
conducted to analyse the CTscore. Table 8 shows the posttest result of CTability. At p <
0.05 level, no significant difference was observed between the control and experimental
groups in the employ, formulate, interpret and overall CT ability.

Posttest of Programming Knowledge

An independent t-test with two levels of learning group (experimental and control) was
conducted to analyse the programming knowledge score. Table 9 shows the posttest
result of programming knowledge. At p < 0.05 level, no significant difference was
observed between the control and experimental groups in code writing, code reading
and overall programming knowledge.

Figure 7. Paired sample test for overall computational thinking and employing mathematical
knowledge in problem solving writing. CT = Computational thinking. * p < .05.

Ezeamuzie 21



Within Group Change (Posttest vs. Pretest Comparison): Computational
Thinking and Programming Knowledge

A further test was conducted to understand the effect of the learning intervention within
the groups (i.e., from pretest to posttest). At p < .05 level, Table 10 shows the paired
sample t-test result and the mean difference in CT and programming knowledge. The
mean scores improved in all dimensions except the control group’s ability to employ
mathematical knowledge in solving problems, which decline from the pretest.

The mean difference in programming knowledge was significant in both the control
and experimental group. Also, both groups showed significant improvement in code
writing ability after the intervention. Unlike the control group, the difference in code
reading was not significant in the experimental group.

On CT performance, no significant difference was observed between the posttest
and pretest CT ability of the control groups. Conversely, the development in the
experimental group’s CT ability was significant in employing mathematical knowledge
in problem-solving and the overall CT, accounting for about 20% and 7% improvement

Table 11. Age and Learning Group Interaction: 2-way ANOVA of Computational Thinking.

Source Type III Sum of Squares Df Mean Square F p

Age 25.180 2 12.590 .564 .574
Learning group .249 1 .249 .011 .916
Age * learning group 194.310 2 97.155 4.352 .021
Error 758.997 34 22.323
Total 5370.250 40
Corrected Total 970.744 39

R Squared = .218 (Adjusted R Squared = .103).

Table 12. Computer Proficiency and Learning Group Interaction: 2-way ANOVA of
Computational Thinking.

Source
Type III Sum of

Squares df
Mean
Square F p

Computer proficiency 258.338 1 258.338 13.660 <.001
Learning group 1.838 1 1.838 .097 .757
Computer proficiency * learning
group

31.538 1 31.538 1.668 .205

Error 680.813 36 18.911
Total 5370.250 40
Corrected Total 970.744 39

R Squared = .299 (Adjusted R Squared = .240).
Note: Independent t-test analysis shows that significant difference exists between non-beginners and be-
ginners (Mean Difference = 5.188, SE=1.404, p < .001).

22 Journal of Educational Computing Research 0(0)



on the assessment scale, respectively. Figure 7 compares the improvement in CT and
employing mathematical knowledge from the pretest and posttest of both the exper-
imental and control groups.

Interaction Between Learning Approach and Participants’ Characteristics

Since the CT assessment was adopted from the PISA instrument for 15-year-old
students, further analysis was conducted to check for any interaction effect between
learning group, age, and gender. Also, the composition of the participant from de-
veloping regions prompted an investigation on whether prior computer usage or
programming experience influenced the development of CT and programming
knowledge.

Age and learning group interaction

Using two-way ANOVAwith two levels of learning group (experimental and control)
and three levels of age (less than 14 years, 15 years, and greater than 16 years), CT and
programming knowledge were analysed. The 15-year group identified their age as
between 14 and 15 years or between 15 and 16 years.

Table 11 is the two-way ANOVA result of the effect of age and learning group on CT
at the p < 0.05 level. No main effect of age was found (F (2, 40) = .564,MS=12.590, p =
.574). However, there was a statistically significant interaction between the effects of
age and learning group on CT (F (2, 40) = 4.352, p = .021). To identify where dif-
ferences exist, a pairwise comparison of the control and experimental groups within
each age level shows that the 16+ years old in the control group had significant
difference development in CT than their experimental group counterpart (Mean
Difference = 7.833, SE=3.450, p = .030).

Table 13. Computer Proficiency and Learning Group Interaction: 2-way ANOVA of
Programming.

Source Type III Sum of Squares df Mean Square F p

Computer Proficiency 403.004 1 403.004 8.460 .006
Learning group 20.417 1 20.417 .429 .517
Computer proficiency * learning
group

8.067 1 8.067 .169 .683

Error 1714.917 36 47.637
Total 6562.750 40
Corrected Total 2142.244 39

R Squared = .199 (Adjusted R Squared = .133).
Note: Independent t-test analysis shows that significant difference exists between non-beginners and be-
ginners (Mean Difference = 6.479, SE=2.228, p =.006).

Ezeamuzie 23



Two-way ANOVA result of the effect of age and learning group on programming at
the p < 0.05 level shows no main effect of age (F (2, 40) = .783,MS=38.551, p = .465)
and no significant interaction effects on programming (F (2, 40) = 3.234, p = .052).

Computer proficiency and learning group interaction. Using two-way ANOVA with two
levels of learning group (experimental and control) and two levels of computer
proficiency (beginner and non-beginner), CT and programming knowledge were an-
alysed. The beginner comprised of participants that identified their computer profi-
ciency as ‘never used’ or ‘novice user’. The non-beginner represents participants that
have intermediate, advanced, or expert exposure to a computer.

Table 12 is the two-way ANOVA result of the effect of computer proficiency and
learning group on CT at the p < 0.05 level. There is a main effect of computer pro-
ficiency (F (1, 40) = 13.660,MS=258.338, p < .001) on CT. To identify the difference in
computer proficiency on CT, an independent t-test analysis to compare the non-
beginners and beginners was performed. A significant difference was found be-
tween non-beginners and beginners (Mean Difference = 5.188, SE=1.404, p < .001).
There was no statistically significant interaction between the computer proficiency and
learning group on CT (F (1, 40) = 1.668, p = .205).

Table 13 is the two-way ANOVA result of the effect of computer proficiency and
learning group on programming at the p < 0.05 level. There is a main effect of computer
proficiency (F (1, 40) = 8.460,MS=403.004, p = .006) on programming knowledge. To
identify the difference in computer proficiency on programming knowledge, an in-
dependent t-test analysis to compare the non-beginners and beginners was performed.
A significant difference was found between non-beginners and beginners (Mean
Difference = 6.479, SE=2.228, p =.006). There was no interaction between the
computer use proficiency and learning group on programming (F (1, 40) = .169,
p = .683).

Prior programming experience and learning group interaction. Using two-way ANOVA
with two levels of learning group (experimental and control) and two levels of pro-
gramming experience (beginner and non-beginner), CT and programming knowledge
were analysed. Two-way ANOVA result of the effect of prior programming experience
and learning group on CT at the p < 0.05 level shows no main effect of prior pro-
gramming experience (F (1, 40) = 2.829, MS = 69.952, p = .101) and no significant
interaction between the prior programming experience and learning group on CT (F (1,
40) = .668, p = .419). Also, two-way ANOVA result of the effect of prior programming
experience and learning group on programming at the p < 0.05 level shows no main
effect of prior programming experience (F (1, 40) = .549,MS = 31.515, p = .463) and no
significant interaction between the prior programming experience and learning group
on programming (F (1, 40) = .394, p = .534).

Gender and learning group interaction. Using two-way ANOVA with two levels of
learning group (experimental and control) and two levels of gender (female and male),

24 Journal of Educational Computing Research 0(0)



CT and programming knowledge were analysed. Two-way ANOVA result of the effect
of gender and learning group on CTat the p < 0.05 level shows no main effect of gender
(F (1, 40) = 2.419, MS = 61.112, p = .129) and no significant interaction between the
gender and learning group on CT (F (1, 40) = .011, p = .918). Also, two-way ANOVA
result of the effect of gender and learning group on programming at the p < 0.05 level
shows no main effect of gender (F (1, 40) = .347, MS = 20.000, p = .560) and no
significant interaction between the gender and learning group on programming (F (1,
40) = .434, p = .514).

Discussion

The central issue of investigation in this study is whether learning to program using
DECA abstractive-based instructional model influence students’ CT skills (RQ1) and
programming knowledge (RQ2). Also, supplementary research question probed for
interaction effects of students’ characteristics (age, computer proficiency, prior pro-
gramming experience, gender) towards CT (RQ3). This section summarises the results,
examines how the findings support or contradict prior studies, and highlights the
implication of the findings.

Impact of Abstractive-Based Learning on Computational Thinking (RQ 1) and
Programming Knowledge (RQ 2)

In this study, the evidence that learning programming using the DECA model supports
students’ programming and CT skills is mixed and needs to be interpreted with caution.
According to Table 8, the posttest comparison of CT shows no significant difference
between the control and experimental groups in both the overall CT and the sub-
dimensions of employ, formulate, and interpret. Similarly, in the development of
programming knowledge as depicted in Table 9, no significant difference was observed
between the control and experimental groups in code writing, code reading and overall
programming knowledge.

Although there was no significant difference between the experimental and control
groups in CT skill and programming knowledge at posttest, further investigation
through paired sample t-test (see Table 10) showed that students improved in all
dimensions except the decline in the ‘employ’ dimension of CT in the control
group. Concerning programming knowledge, the mean difference between overall
programming knowledge in posttest and pretest was significant in both the control and
experimental group. For CT skills, only the experimental group had significant im-
provement, which implies that DECAwas effective in developing CT. This finding is
interpreted with caution because no significant difference was observed in the between-
groups independent t-test comparison at posttest. Although DECA resulted in
significant development of CT in the within-group analysis, the result is more ap-
propriately described as inconclusive evidence because there was no significant

Ezeamuzie 25



difference between the control and experimental groups at posttest, after equality of
groups was confirmed at pretest.

On the arguments about learning programming and the transfer of problem solving
in other domains, Pea and Kurland (1984) cast doubt on the perception of the cognitive
benefits of programming. However, a meta-analysis showed that learning programming
improves students’ cognitive ability (Liao, 2000; Liao & Bright, 1991). Claims of
transfer from programming have been refuted in recent years (Denning, 2017; Guzdial,
2015). But Scherer et al.’s (2019) meta-analytic finding suggested that the contentious
issue of transfer of programming to CT is substantiated, which contrasts with the
findings in this study.

Decoupling CT from programming is an important element in this study that reflects
Wing’s (2006) position on CT as ‘conceptualizing, not programming’ (p. 35) but
contrasts with Scherer et al.’s (2019) classification of CT as a near transfer skill
(i.e., part of the programming knowledge). Therefore, probing what was measured is a
critical argument about the transferability of programming. For instance, Wei et al.
(2021) examined the effectiveness of partial pair programming (PPP) on elementary
school students’ CT skills with Dr Scratch (Moreno-León et al., 2015) and Taylor and
Baek (2019) investigated the impact of grouping by gender and group roles on CTskills
with the CT-test by Román-González et al. (2017). Although Wei et al. (2021) and
Taylor and Baek (2019) found positive transfer outcomes, code writing and code
reading were the underlying skills measured in the studies. Other studies adopted self-
report instruments such as the CT-scale by Korkmaz et al. (2017) in an investigation of
the effects of critical reflection on middle schoolers’ CT skills (He et al., 2021).
Whereas He et al. (2021) found that students’ CT skills improved, the finding seems to
equate CT disposition and self-beliefs to represent CT skills. When CT is oper-
ationalized as programming or disposition, it may not be comparable with the result of
CT as an instance of everyday problem-solving.

In studies that adopted CT assessments that mirrored real-life contexts, Bebras tasks
(Dagienė & Sentance, 2016) were adopted to investigate the effect of robotic pro-
gramming on primary schoolers’ CT skills (Noh & Lee, 2020). In a similar investi-
gation but on the influence of virtual robotic programming in middle school, CT
assessment was modelled as a real-life scenario of applying sensors in tracking ve-
hicular capacity on a bridge (Witherspoon et al., 2017). A study by Akcaoglu (2014)
adopted PISA in assessing students’ problem-solving after a vacation game-making
program. These studies (Akcaoglu, 2014; Noh & Lee, 2020; Witherspoon et al., 2017)
modelled CT in real-life contexts and reported significant improvements in students’
CTskills. The findings of the above studies contradict the inconclusive transfer effect of
programming on CT in this study. However, closer analysis revealed that the studies
adopted one group pretest-posttest research design. Therefore, the significant CT
improvements in the studies is identical and consistent with the paired t-test analysis
(see Table 10) that showed significant CT improvement among the experimental group
but not the control group. Implicitly, using abstractive-based programming – DECA
resulted in significant improvement when posttest is compared with pretest.

26 Journal of Educational Computing Research 0(0)



Nonetheless, the issue of transfer is considered inconclusive as the experimental
standard of comparing between groups (i.e., control vs. experimental at the posttest,
with homogeneity at baseline) showed that the difference is not significant.

With respect to programming knowledge, the control and experimental groups
recorded significant improvement between the pretest and posttest after 8 hours of self-
study and another 8 hours of synchronous online training. This improvement shows that
problem-based learning, when supported with worked examples and appropriate
scaffolding, constitutes an effective approach to learning programming. This is con-
sistent with the finding that students’ programming ability remained high from the first
lesson of constructionist learning (Ezeamuzie, 2022) and the strong near-transfer (g =
.75) between learning programming and programming knowledge (Scherer et al.,
2019).

Interaction Effects of Abstractive-based Programming and Students’
Characteristics on Computational Thinking and Programming Knowledge
(RQ 3)

Analysis of the interaction effects of approach to learning programming and students’
characteristics showed that prior programming experience and gender had neither
significant interaction nor main effect on CT and programming knowledge. These
findings are consistent with prior studies that found no effect of gender on programming
(Grover et al., 2019; Lau & Yuen, 2009; 2011; Sullivan & Bers, 2019).

An interaction effect was found between the learning approach and age on CT,
suggesting that students in the control group with ages greater than 16 years out-
performed their experimental group equivalent. However, this is interpreted with
caution because of the small number of participants that are older than 16years in the
experimental group (n = 3). Out of the three students in the experimental group with
ages greater than 16 years, compared with five in the control group, further analysis of
time spent on the posttest showed that one of the students in the experimental group
completed less than 38% of the test. The finding of no main effect by age contrast with
the cross-sectional study that examined the difference in CT between lower and upper
elementary school students (Kyza et al., 2022). Nonetheless, the findings in Kyza et al.
(2022) that upper elementary students outperformed their peers in lower classes with
significant differences in abstraction and decomposition may not be comparable as the
assessment was based on Dr Scratch’s analysis of programming artefacts. Also, another
plausible explanation is the wide developmental difference between the participants in
Kyza et al. (2022) and the near uniformity in the age of participants in this study.

A noticeable exception is the main effect of computer proficiency, implying that
mastery in the use of computers has a positive impact on the development of CT and
programming knowledge. To make sense of this result, beginners comprised partic-
ipants who self-reported their computer-use proficiency as ‘never used’ or ‘novice
user’. The non-beginner identified their exposure to computers as intermediate, ad-
vanced, or expert. In addition (see Table 1), this investigation was implemented in a

Ezeamuzie 27



region where a sizeable number of the participants have minimal or no exposure to
technology-enhanced learning. Within this context, other plausible interpretations
exist. For example, the difference may not be truly a reflection of programming
knowledge. The non-beginners familiarity with computers may be the edge in per-
formance as learning and assessment were conducted through computers.

Logically, one may expect prior programming experience to influence CT and
programming knowledge. While this was never the case, the composition of partic-
ipants and self-reported prior programming experience provide some clues. Table 1
shows that 29% of participants reported prior programming experience. However,
about 95% of participants have no programming experience or have programmed for
less than 1 year. Considering participants’ exposure to computers, it is plausible that
their reported prior programming experience may be isolated exposure rather than a
persistent learning experience.

Conclusion, Limitations, and Implications

As claims and counterclaims about the transfer effect of programming on cognitive
skills have persisted across centuries, this study was designed to provide further clarity
on the transferability of CT through learning programming. Specifically, operation-
alizing CT as problem-solving in the PISA framework that is well segregated from
programming. More so, this study introduced DECA – a novel and systematic way of
solving programming tasks that is grounded in abstraction that may enhance transfer to
CT. Gaining a holistic understanding of the interaction of DECA and CT, when
disentangled from programming, is a crucial step in advancing research and practice on
both programming and CT.

To highlight the educational implications of this study, it is important to ac-
knowledge its limitations. The major challenge was conducting this experiment during
the COVID-19 pandemic. Some of the research plans were adjusted to meet the
prevailing restrictions. For example, the original plan for in-class training was switched
to synchronous online learning. In addition, plans to collect supplementary qualitative
data through student interviews and in-class observation for triangulation were affected
too. Social distancing regulations and school prevailing policy including the com-
pulsory vacation of students after the training hindered the conduct of interviews.
Bottlenecks in networks and online learning hindered the observation of students’
programming processes, attitudes, and challenges in an authentic setting.

Despite these limitations, this study unearthed valuable lessons for both practice and
research. Theoretically, the abstractive-based model – DECAwas operationalized as a
pedagogical approach to provide systematic processes for solving problems. By de-
contextualizing CT from programming in this study through PISA, it uncovered several
trouble spots that hinder the generalization that learning programming enhances CTand
expounded gaps for future studies to consider in operationalizing CT. Although ev-
idence that learning programming enhances CT is inconclusive, the within-group
improvement in the experimental group’s CT and the lack of it in the control group are

28 Journal of Educational Computing Research 0(0)



signs that infusing DECA in problem-solving is a promising instructional approach.
Researchers will have a deeper understanding of how CT is conceptualized and
stimulate more empirical studies on developing CT skills in 21st century learners.

What was unearthed in this study revealed the potential of CT in supporting cross-
disciplinary and everyday problem-solving; an educational goal that Jonassen (2000)
described as ‘the most important outcome for life’ (p. 63). Nonetheless, more research
is needed to articulate how computer scientists think and how they relate to everyday
problems. Considering the limitations in this study such as duration of learning, limited
technology and students’ unfamiliarity with synchronous online learning, more in-
vestigation is required to explore the role of abstraction such as DECA, which provides
a systematic way of solving problems.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship,
and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this
article.

ORCID iD

Ndudi O. Ezeamuzie  https://orcid.org/0000-0001-8946-5709

Supplemental Material

Supplemental material for this article is available online.

References

Akcaoglu, M. (2014). Learning problem-solving through making games at the game design and
learning summer program. Educational Technology Research and Development, 62(5),
583–600. https://doi.org/10.1007/s11423-014-9347-4

Baek, Y., Wang, S., Yang, D., Ching, Y., Swanson, S., & Chittoori, B. (2019). Revisiting second
graders’ robotics with an understand/use-modify-create (U2MC) strategy. European Journal
of STEM Education, 4(1), Article 07. https://doi.org/10.20897/ejsteme/5772

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for
everyone. Learning Leading with Technology, 38(6), 20–23. https://www.
learningandleading-digital.com/learning_leading/20110304?pm=2&pg=22#pg22

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved
and what is the role of the computer science education community? ACM Inroads, 2(1),
48–54. https://doi.org/10.1145/1929887.1929905

Ezeamuzie 29

https://orcid.org/0000-0001-8946-5709
https://orcid.org/0000-0001-8946-5709
https://doi.org/10.1007/s11423-014-9347-4
https://doi.org/10.20897/ejsteme/5772
https://www.learningandleading-digital.com/learning_leading/20110304?pm=2&pg=22#pg22
https://www.learningandleading-digital.com/learning_leading/20110304?pm=2&pg=22#pg22
https://doi.org/10.1145/1929887.1929905


Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and
tinkering: Exploration of an early childhood robotics curriculum. Computers & Education,
72(C), 145–157. https://doi.org/10.1016/j.compedu.2013.10.020

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the devel-
opment of computational thinking. In Proceedings of the 2012 Annual Meeting of the
American Educational Research Association, 1, 1–25. http://scratched.gse.harvard.edu/ct/
files/AERA2012.pdf

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing
elementary students’ computational thinking in everyday reasoning and robotics pro-
gramming. Computers & Education, 109, 162–175. https://doi.org/10.1016/j.compedu.
2017.03.001

Colburn, T., & Shute, G. (2007). Abstraction in computer science. Minds and Machines, 17(2),
169–184. https://doi.org/10.1007/s11023-007-9061-7

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., & Selby, C. (2015). Compu-
tational thinking: A guide for teachers. https://eprints.soton.ac.uk/424545/

Dagienė, V., & Sentance, S. (2016). It’s computational thinking! Bebras tasks in the curriculum.
In A. Brodnik & F. Tort (Eds.), Informatics in schools: Improvement of informatics
knowledge and perception (pp. 28–39). Springer. https://doi.org/10.1007/978-3-319-46747-
4_3

Denner, J., Campe, S., & Werner, L. (2019). Does computer game design and programming
benefit children? A meta-synthesis of research. ACM Transactions on Computing Edu-
cation, 19(3), Article 19. https://doi.org/10.1145/3277565

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of
the ACM, 60(6), 33–39. https://doi.org/10.1145/2998438

Denning, P. J., Tedre, M., & Yongpradit, P. (2017). Misconceptions about computer science.
Communications of the ACM, 60(3), 31–33. https://doi.org/10.1145/3041047

Ezeamuzie, N. O. (2022). Project-first approach to programming in K–12: Tracking the de-
velopment of novice programmers in technology-deprived environments. Education and
Information Technologies. https://doi.org/10.1007/s10639-022-11180-8

Ezeamuzie, N. O., & Leung, J. S. C. (2022). Computational thinking through an empirical lens: A
systematic review of literature. Journal of Educational Computing Research, 60(2),
481–511. https://doi.org/10.1177/07356331211033158

Ezeamuzie, N. O., Leung, J. S. C., Garcia, R., & Ting, F. S. T. (2022a). Discovering compu-
tational thinking in everyday problem solving: A multiple case study of route planning.
Journal of Computer Assisted Learning. https://doi.org/10.1111/jcal.12720

Ezeamuzie, N. O., Leung, J. S. C., & Ting, F. S. T. (2022b). Unleashing the potential of ab-
straction from cloud of computational thinking: A systematic review of literature. Journal of
Educational Computing Research, 60(4), 877–905. https://doi.org/10.1177/
07356331211055379

Grover, S., Jackiw, N., & Lundh, P. (2019). Concepts before coding: Non-programming in-
teractives to advance learning of introductory programming concepts in middle school.
Computer Science Education, 29(2–3), 106–135. https://doi.org/10.1080/08993408.2019.
1568955

30 Journal of Educational Computing Research 0(0)

https://doi.org/10.1016/j.compedu.2013.10.020
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
https://doi.org/10.1016/j.compedu.2017.03.001
https://doi.org/10.1016/j.compedu.2017.03.001
https://doi.org/10.1007/s11023-007-9061-7
https://eprints.soton.ac.uk/424545/
https://doi.org/10.1007/978-3-319-46747-4_3
https://doi.org/10.1007/978-3-319-46747-4_3
https://doi.org/10.1145/3277565
https://doi.org/10.1145/2998438
https://doi.org/10.1145/3041047
https://doi.org/10.1007/s10639-022-11180-8
https://doi.org/10.1177/07356331211033158
https://doi.org/10.1111/jcal.12720
https://doi.org/10.1177/07356331211055379
https://doi.org/10.1177/07356331211055379
https://doi.org/10.1080/08993408.2019.1568955
https://doi.org/10.1080/08993408.2019.1568955


Guzdial, M. (2008). Paving the way for computational thinking. Communications of the ACM,
51(8), 25–27. https://doi.org/10.1145/1378704.1378713

Guzdial, M. (2015). Learner-centered design of computing education: Research on computing for
everyone. Synthesis Lectures on Human-Centered Informatics, 8(6), 1–165. https://doi.org/
10.2200/S00684ED1V01Y201511HCI033

He, Z. Z., Wu, X. M., Wang, Q. Y., & Huang, C. Q. (2021). Developing eighth-grade students’
computational thinking with critical reflection. Sustainability, 13(20), Article 11192. https://
doi.org/10.3390/su132011192

Jonassen, D. H. (1997). Instructional design models for well-structured and III-structured
problem-solving learning outcomes. Educational Technology, Research and Develop-
ment, 45(1), 65–94. https://doi.org/10.1007/BF02299613

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology
Research and Development, 48(4), 63–85. https://doi.org/10.1007/bf02300500

Knuth, D. E. (1974). Computer science and its relation to mathematics. The American Math-
ematical Monthly, 81(4), 323–343. https://doi.org/10.1080/00029890.1974.11993556

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the com-
putational thinking scales (CTS). Computers in Human Behavior, 72, 558–569. https://doi.
org/10.1016/j.chb.2017.01.005

Kramer, J. (2007). Is abstraction the key to computing? Communications of the ACM, 50(4),
36–42. https://doi.org/10.1145/1232743.1232745

Kyza, E. A., Georgiou, Y., Agesilaou, A., & Souropetsis, M. (2022). A cross-sectional study
investigating primary school children’s coding practices and computational thinking using
ScratchJr. Journal of Educational Computing Research, 60(1), 220–257. https://doi.org/10.
1177/07356331211027387

Lau, W. W. F., & Yuen, A. H. K. (2009). Exploring the effects of gender and learning styles on
computer programming performance: Implications for programming pedagogy. British
Journal of Educational Technology, 40(4), 696–712. https://doi.org/10.1111/j.1467-8535.
2008.00847.x

Lau, W. W. F., & Yuen, A. H. K. (2011). The impact of the medium of instruction: The case of
teaching and learning of computer programming. Education and Information Technologies,
16(2), 183–201. https://doi.org/10.1007/s10639-009-9118-8

Lee, M., & Lee, J. (2021). Enhancing computational thinking skills in informatics in secondary
education: The case of South Korea. Educational Technology Research and Development,
69(5), 2869–2893. https://doi.org/10.1007/s11423-021-10035-2

Liao, Y.-K. (2000). A meta-analysis of computer programming on cognitive outcomes: An
updated synthesis. In J. Bourdeau & R. Heller (Eds.), Proceedings of ED-MEDIA 2000–
world conference on educational multimedia, hypermedia & telecommunications
(pp. 598–604). Association for the Advancement of Computing in Education. https://www.
learntechlib.org/p/16132

Liao, Y.-K. C., & Bright, G.W. (1991). Effects of computer programming on cognitive outcomes:
A meta-analysis. Journal of Educational Computing Research, 7(3), 251–268. https://doi.
org/10.2190/e53g-hh8k-ajrr-k69m

Ezeamuzie 31

https://doi.org/10.1145/1378704.1378713
https://doi.org/10.2200/S00684ED1V01Y201511HCI033
https://doi.org/10.2200/S00684ED1V01Y201511HCI033
https://doi.org/10.3390/su132011192
https://doi.org/10.3390/su132011192
https://doi.org/10.1007/BF02299613
https://doi.org/10.1007/bf02300500
https://doi.org/10.1080/00029890.1974.11993556
https://doi.org/10.1016/j.chb.2017.01.005
https://doi.org/10.1016/j.chb.2017.01.005
https://doi.org/10.1145/1232743.1232745
https://doi.org/10.1177/07356331211027387
https://doi.org/10.1177/07356331211027387
https://doi.org/10.1111/j.1467-8535.2008.00847.x
https://doi.org/10.1111/j.1467-8535.2008.00847.x
https://doi.org/10.1007/s10639-009-9118-8
https://doi.org/10.1007/s11423-021-10035-2
https://www.learntechlib.org/p/16132
https://www.learntechlib.org/p/16132
https://doi.org/10.2190/e53g-hh8k-ajrr-k69m
https://doi.org/10.2190/e53g-hh8k-ajrr-k69m


Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking
through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.
https://doi.org/10.1016/j.chb.2014.09.012

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, A.
(2014). Computational thinking in K-9 education. In A. Clear & R. Lister (Eds.), Pro-
ceedings of the working group reports of the 2014 on innovation & technology in computer
science education conference (pp. 1–29). ACM. https://doi.org/10.1145/2713609.2713610

Mayer, R. E. (1998). Cognitive, metacognitive, and motivational aspects of problem solving.
Instructional Science, 26(1–2), 49–63. https://doi.org/10.1023/A:1003088013286

Merkouris, A., Chorianopoulos, K., & Kameas, A. (2017). Teaching programming in secondary
education through embodied computing platforms: Robotics and wearables. ACM
Transactions on Computing Education, 17(2), Article 9. https://doi.org/10.1145/3025013

Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Automatic analysis of
scratch projects to assess and foster computational thinking. Revista de Educación a
Distancia, 46(10), 1–23. https://doi.org/10.6018/red/46/10

Nardelli, E. (2019). Do we really need computational thinking? Communications of the ACM,
62(2), 32–35. https://doi.org/10.1145/3231587

Noh, J., & Lee, J. (2020). Effects of robotics programming on the computational thinking and
creativity of elementary school students. Educational Technology Research and Devel-
opment, 68(1), 463–484. https://doi.org/10.1007/s11423-019-09708-w

Organisation for Economic Co-operation and Development. (2013a). PISA 2012 assessment and
analytical framework: Mathematics, reading, science, problem solving and financial lit-
eracy. OECD Publishing. https://doi.org/10.1787/9789264190511-6-en

Organisation for Economic Co-operation and Development. (2013b). PISA 2012 mathematics
framework. In PISA 2012 assessment and analytical framework: Mathematics, reading,
science, problem solving and financial literacy (pp. 23–58). OECD Publishing. https://doi.
org/10.1787/9789264190511-6-en

Organisation for Economic Co-operation and Development. (2014). PISA 2012 technical report.
OECD Publishing. https://www.oecd.org/pisa/pisaproducts/PISA-2012-technical-report-
final.pdf

Organization for Economic Co-operation and Development. (2016). PISA 2015 results (volume
i): Excellence and equity in education. OECD Publishing. https://doi.org/10.1787/
9789264266490-en

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Pea, R. D., &Kurland, D.M. (1984). On the cognitive effects of learning computer programming.
New Ideas in Psychology, 2(2), 137–168. https://doi.org/10.1016/0732-118X(84)90018-7

Pérez-Marı́n, D., Hijón-Neira, R., Bacelo, A., & Pizarro, C. (2020). Can computational thinking
be improved by using a methodology based on metaphors and scratch to teach computer
programming to children? Computers in Human Behavior, 105, 105849. https://doi.org/10.
1016/j.chb.2018.12.027

Popat, S., & Starkey, L. (2019). Learning to code or coding to learn? A systematic review.
Computers & Education, 128, 365–376. https://doi.org/10.1016/j.compedu.2018.10.005

32 Journal of Educational Computing Research 0(0)

https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1145/2713609.2713610
https://doi.org/10.1023/A:1003088013286
https://doi.org/10.1145/3025013
https://doi.org/10.6018/red/46/10
https://doi.org/10.1145/3231587
https://doi.org/10.1007/s11423-019-09708-w
https://doi.org/10.1787/9789264190511-6-en
https://doi.org/10.1787/9789264190511-6-en
https://doi.org/10.1787/9789264190511-6-en
https://www.oecd.org/pisa/pisaproducts/PISA-2012-technical-report-final.pdf
https://www.oecd.org/pisa/pisaproducts/PISA-2012-technical-report-final.pdf
https://doi.org/10.1787/9789264266490-en
https://doi.org/10.1787/9789264266490-en
https://doi.org/10.1016/0732-118X(84)90018-7
https://doi.org/10.1016/j.chb.2018.12.027
https://doi.org/10.1016/j.chb.2018.12.027
https://doi.org/10.1016/j.compedu.2018.10.005


Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which cognitive
abilities underlie computational thinking? Criterion validity of the computational thinking
test. Computers in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.
047

Saritepeci, M. (2020). Developing computational thinking skills of high school students: Design-
based learning activities and programming tasks. The Asia-Pacific Education Researcher,
29(1), 35–54. https://doi.org/10.1007/s40299-019-00480-2

Scherer, R., Siddiq, F., & Viveros, B. S. (2019). The cognitive benefits of learning computer
programming: A meta-analysis of transfer effects. Journal of Educational Psychology,
111(5), 764–792. https://doi.org/10.1037/edu0000314

Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition. https://
eprints.soton.ac.uk/356481/

Shen, J., Chen, G., Barth-Cohen, L., Jiang, S., & Eltoukhy, M. (2020). Connecting computational
thinking in everyday reasoning and programming for elementary school students. Journal of
Research on Technology in Education, 1-21. https://doi.org/10.1080/15391523.2020.
1834474

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability.
Psychological Bulletin, 86(2), 420–428. https://doi.org/10.1037/0033-2909.86.2.420

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Edu-
cational Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Sullivan, A., & Bers, M. U. (2019). Investigating the use of robotics to increase girls’ interest in
engineering during early elementary school. International Journal of Technology and
Design Education, 29(5), 1033–1051. https://doi.org/10.1007/s10798-018-9483-y

Taylor, K., & Baek, Y. (2019). Grouping matters in computational robotic activities. Computers
in Human Behavior, 93, 99–105. https://doi.org/10.1016/j.chb.2018.12.010

Tedre, M., & Denning, P. J. (2016). The long quest for computational thinking. In J. Sheard &
C. S. Montero (Eds.), Proceedings of the 16th koli calling international conference on
computing education research (pp. 120–129). ACM. https://doi.org/10.1145/2999541.
2999542

Wei, X., Lin, L., Meng, N., Tan, W., Kong, S.-C., & Kinshuk. (2021). The effectiveness of partial
pair programming on elementary school students’ Computational Thinking skills and self-
efficacy. Computers & Education, 160, Article 104023. https://doi.org/10.1016/j.compedu.
2020.104023

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).
Defining computational thinking for mathematics and science classrooms. Journal of
Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-
9581-5

Wing, J. (2006). Computational thinking.Communications of the ACM, 49(3), 33–35. https://doi.
org/10.1145/1118178.1118215

Ezeamuzie 33

https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1007/s40299-019-00480-2
https://doi.org/10.1037/edu0000314
https://eprints.soton.ac.uk/356481/
https://eprints.soton.ac.uk/356481/
https://doi.org/10.1080/15391523.2020.1834474
https://doi.org/10.1080/15391523.2020.1834474
https://doi.org/10.1037/0033-2909.86.2.420
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1007/s10798-018-9483-y
https://doi.org/10.1016/j.chb.2018.12.010
https://doi.org/10.1145/2999541.2999542
https://doi.org/10.1145/2999541.2999542
https://doi.org/10.1016/j.compedu.2020.104023
https://doi.org/10.1016/j.compedu.2020.104023
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215


Witherspoon, E., Higashi, R., Schunn, C., Baehr, E., & Shoop, R. (2017). Developing com-
putational thinking through a virtual robotics programming curriculum. ACM Transactions
on Computing Education, 18(1), Article 4. https://doi.org/10.1145/3104982

Zhao, L., Liu, X., Wang, C., & Su, Y.-S. (2022). Effect of different mind mapping approaches on
primary school students’ computational thinking skills during visual programming learning.
Computers & Education, 181, Article 104445. https://doi.org/10.1016/j.compedu.2022.
104445

Author Biography

Ndudi O. Ezeamuzie is a doctoral student in the Faculty of Education, The University
of Hong Kong. He is also a computer scientist with research interest in computational
thinking and programming in the context of STEM education.

34 Journal of Educational Computing Research 0(0)

https://doi.org/10.1145/3104982
https://doi.org/10.1016/j.compedu.2022.104445
https://doi.org/10.1016/j.compedu.2022.104445

	Abstractive
	Introduction
	Background
	Computational Thinking
	Programming and Transfer of Cognitive Skills
	Transfer of Computational Thinking Confounded by Nature of Assessment
	Programme for International Student Assessment: Operationalizing Computational Thinking
	Abstractive
	Research Question

	Method
	Participants
	Experimental and Control Groups
	Learning Activities and Resources
	Research Procedure
	Data Collection
	Demographic questionnaire
	Computational thinking assessment

	Programming knowledge assessment
	Data Analysis

	Results
	Outliers, Homogeneity of Variance and Normal Distribution of Data
	Equality of Groups at Pretest: Computational Thinking and Programming Knowledge
	Posttest of Computational Thinking
	Posttest of Programming Knowledge
	Within Group Change (Posttest vs. Pretest Comparison): Computational Thinking and Programming Knowledge
	Interaction Between Learning Approach and Participants’ Characteristics
	Age and learning group interaction
	Computer proficiency and learning group interaction
	Prior programming experience and learning group interaction
	Gender and learning group interaction


	Discussion
	Impact of Abstractive
	Interaction Effects of Abstractive ...

	Conclusion, Limitations, and Implications
	Declaration of Conflicting Interests
	Funding
	ORCID iD
	Supplemental Material
	References
	Author Biography


